
Efficient Self-Shadowed Radiosity Normal Mapping

Chris Green∗

Valve

Normal-mapped Normal mapped with ambient occlusion Self-shadowed

Abstract

In Valve’s Source graphics engine, bump mapping is combined with
precomputed radiosity lighting to provide realistic surface illumina-
tion using a technique we call Radiosity Normal Mapping. When
bump map data is derived from geometric descriptions of surface
detail (such as height maps), only the lighting effects caused by the
surface orientation are preserved and significant lighting cues due
to lighting occlusion by surface details are lost. While it is common
to use an additional texture channel to hold an “ambient occlusion”
field, this only provides a darkening effect which is independent of
the direction from which the surface is being lit.

In this chapter, we present a modification to the Radiosity Normal
Mapping system that we have described in this course in the past.
This modification provides a directional occlusion function to the
bump maps, which requires no additional texture memory and is
actually faster than our previous non-shadowing solution.

1 Introduction

In order to increase surface detail and perceived realism, bump
mapping is used heavily in modern real-time 3D games [Blinn
1978] [Peercy et al. 1997]. Bump maps are often used as an ap-
proximation of highly detailed geometry which would either be too
slow to render in real time or too memory intensive to store rea-
sonably. However, one weakness of bump maps is that they only
modify the surface normal which is used for lighting computations.
While this provides a realistic directional lighting cue, effects such
as self-shadowing of surface details and ambient occlusion are not
rendered.

Traditional bump mapping also cannot be combined with conven-
tional precomputed light maps, a technique in which a global illu-
mination solution is generated as a precomputation and then stored
in a low resolution texture which is used to modulate the brightness
of the surface albedo [id Software 1997].

With Radiosity Normal Mapping, the precomputed light map in-
formation was extended to encompass lighting from multiple di-
rections and allowed arbitrary bump mapped data to be combined
with precomputed lighting textures [McTaggart 2004] [Mitchell
et al. 2006]. Using Radiosity Normal Mapping, the distribution
of incoming distributed lighting can be stored in many possible
bases, with the tangent-space surface normal evaluated per pixel

∗e-mail: cgreen@valvesoftware.com

and then convolved with the incoming light distribution for each
output pixel [Sloan 2006].

In this chapter, we extend Radiosity Normal Mapping by modify-
ing the bump map representation to be pre-convolved against the
tangent-space lighting basis in order to gain efficiency and reduce
rendering artifacts. We then extend this pre-convolution to take into
account directional self-occlusion information, allowing for both
occlusion of isotropic ambient lighting and dynamic directional
lighting.

2 Related work

Many different techniques have been used to add shadowing infor-
mation to bump mapped surfaces for real-time rendering. Horizon
mapping augments bump map data by precomputing and storing
the angle to the “horizon” for a small set of fixed tangent-space di-
rections and uses this representation to produce hard shadows [Max
1998] [Sloan and Cohen 2000]. In [Kautz et al. 2000], an oriented
ellipse is fitted to the distribution of non-shadowed lights over a
bump map texel. In [Oat and Sander 2007], a spherical cap is used
to model the visible light directions over a bump map texel, and
this data is used to render hard and soft shadows from point and
area lights in real time.

Recently, techniques have been developed for direct rendering of
height fields in real time using graphics hardware [Policarpo et al.
2005] [McGuire and McGuire ] [Tatarchuk 2006]. Since these tech-
niques are able to compute visibility of height field texels from any
viewpoint, they are also able to implement shadowing of height
fields by computing visibility to light sources.

3 Representation and Generation

We wished to implement self-shadowing of bump maps that would

• mesh well with our existing Radiosity Normal Mapping tech-
nique

• work on older generations of graphics hardware as well as
current systems.

• run as fast as, or faster than our current non-shadowed solu-
tion.

• improve bump map anti-aliasing



3 REPRESENTATION AND GENERATION

• work with dynamics lights as well as our pre-calculated ra-
diosity lighting

• provide soft shadows and ambient occlusion

• allow shadowing information to be generated either from
height data or from arbitrary geometry.

• not use any increased texture storage space compared to or-
dinary bump mapping. In particular, we wanted to be able to
preserve existing uses of the alpha channel of bump maps as
a mask for various other effects.

We successfully implemented a method to generate diffuse soft-
shadows from static and dynamic light sources, with no increase
in bump map storage space, while providing an actual performance
increase over our existing non-shadowed radiosity bump map im-
plementation.

Prior to the integration of self-shadowing into the Radiosity Normal
Mapping technique, the Source engine calculated lighting at each
surface pixel using the following operations:

~B0..2 =
{−1√

6
,

1√
2
,

1√
3

}
,
{−1√

6
,
−1√

2
,

1√
3

}
,
{√2√

3
, 0,

1√
3

}
~N = 2~T − 1

~Di =
saturate( ~N · ~Bi)

2∑2

i=0
~Di

pixelcolor = kd

2∑
i=0

~Li
~Di

where ~T is the tangent-space bump map texel (which must be scaled
and biased to obtain ~N , because the stored texels are unsigned), ~B
is the set of tangent-space directions for which incoming light has
been precomputed, ~L0..2 are the 3 precomputed lighting values, and
kd is the RGB albedo of the surface texel being lit. saturate(x) is the
HLSL function which clamps its input to be in the range between 0
and 1.

f l o a t 3 normal = 2 . 0 ∗ norma lTexe l − 1 . 0 ;
f l o a t 3 dp ;
dp . x = s a t u r a t e ( d o t ( normal , bumpBasis [ 0 ] ) ) ;
dp . y = s a t u r a t e ( d o t ( normal , bumpBasis [ 1 ] ) ) ;
dp . z = s a t u r a t e ( d o t ( normal , bumpBasis [ 2 ] ) ) ;
dp ∗= dp ;

f l o a t sum = d o t ( dp , f l o a t 3 ( 1 . 0 f , 1 . 0 f , 1 . 0 f ) ) ;
f l o a t 3 d i f f u s e L i g h t i n g = dp . x ∗ l i g h t m a p C o l o r 1 +

dp . y ∗ l i g h t m a p C o l o r 2 +
dp . z ∗ l i g h t m a p C o l o r 3 ;

d i f f u s e L i g h t i n g /= sum ;

Figure 1: HLSL source code for original Source Radiosity Normal
Mapping

We observed that some execution time could be saved if, instead
of storing the surface normal ~N in our texture maps, we stored the
value of ~D in the 3 color components of the bump map, which was a
trivial modification to our bump map generation utility. This change
reduced the lighting equation to just pixelcolor = kd

∑2

i=0
~Li

~Ti.
Just making this change saves a substantial number of pixel shader
instructions. However, we no longer have a tangent-space surface

f l o a t 3 d i f f u s e L i g h t i n g = norma lTexe l . x ∗ l i g h t m a p C o l o r 1 +
norma lTexe l . y ∗ l i g h t m a p C o l o r 2 +
norma lTexe l . z ∗ l i g h t m a p C o l o r 3 ;

Figure 2: HLSL source code for new self shadowed radiosity nor-
mal mapping

normal for use to calculate the lighting from dynamic lights and re-
flection vectors. However, when needed, we can use our original
basis directions ~B to reconstruct a suitable tangent-space normal
for reflections. For dynamic lights, we can project the lighting di-
rection onto our basis directions and use that directly in the lighting
equation, which gives us a form of shadowing from dynamic light
sources.

Once bump maps are stored in this format, some advantages are
seen besides the increased pixel shader performance:

• Because the bump maps now just represent positive light map
texture blending weights, no special processing is required
when filtering or mip-mapping them.

• Numeric precision is increased since we no longer have to
represent negative numbers and because we are now storing
the bump maps in the exact numeric representation required
by the shader.

• Surface textures stored in this form can be processed by ex-
isting art tools with no special interpretation. For instance,
filters such as sharpen and blur can be used in PhotoshopTM.

• Texture blending for operations such as detail texturing, tex-
ture cross fading, etc. are much more straightforward.

• Fewer aliasing artifacts will be seen when textures are mini-
mized.

• Textures in this format can be directly generated from geom-
etry in 3D rendering packages, by placing red/green/blue un-
shadowed point lights in the scene, offset along the 3 pre-
defined basis vectors.

Ordinary bump maps can only change the apparent lighting orien-
tation of the surface. However, when rendering with this represen-
tation, if we uniformly scale the RGB values of the normal map
texels, we can provide a darkening effect which is independent of
the lighting direction. This allows us to have normal maps also
act to modulate surface albedo, without having to store a separate
brightness channel, or change the RGB values of the base albedo
texture. Since it is often possible to produce good imagery by com-
bining a fairly low frequency albedo texture with a high frequency
bump map texture, this can save us texture memory.

A common bump map production method involves taking eleva-
tion maps which are either painted, created in a modeling package,
or acquired from real-word sources, and then using these elevation
maps to extract a surface normal. Then, the same elevation data is
used to calculate an ambient occlusion channel, which is typically
generated by firing from each texel, a large set of rays. The results
of these ray intersections are used to determine the cosine-weighted
proportion of the hemisphere above the surface which can be seen
without the surface obscuring it. The result of this ambient occlu-
sion calculation is then either stored in its own texture channel, or
multiplied into the base texture. We can do the exact same thing in
our representation, except that we can encode this channel directly
into the 3 channel normal map.

c©2007 Valve Corporation. All Rights Reserved



REFERENCES

Height map Bump map Bump map stored in new basis With directional ambient occlusion

Moreover, since each of the channels of our modified bump map
store the amount of light coming from 3 fixed tangent-space direc-
tions, we are able to do better than just encoding ambient occlusion.
If we weight the contribution of each ray intersection test based
upon the dot product between it and the fixed tangent-space direc-
tion associated with each channel, we can calculate a separate oc-
clusion value for each channel, with that occlusion value represent-
ing a smaller angular distribution centered upon the corresponding
basis vector. This gives us a “directional ambient occlusion” effect
which causes ambient and direct lighting arriving from different di-
rections to be darkened when that light would have been blocked
by the self-shadowing effects of the surface. These 3 ambient oc-
clusion directions are simply multiplied into the 3 channels of the
non-shadowed bump map we are already using in our representa-
tion. This gives us a form of diffuse self-shadowing essentially “for
free,” providing self-shadowing of direct and indirect light.

When these directional ambient occlusion textures are converted
back into normal vectors for reflection calculations, something akin
to the use of “bent normals” is achieved [?].

We implemented an efficient multi-threaded SIMD ray tracing sys-
tem [Wald et al. ] in order to perform the hundreds of ray inter-
section tests per texel necessary to generate accurate directional
ambient occlusion. Our offline utility takes as input an elevation
map and an elevation scale factor. A user-configurable bilateral fil-
ter [Tomasi and Manduchi 1998] is applied to the input image to
reduce stair-stepping, and then 300 rays per output texel are traced
in order to generate bump maps with directional ambient occlusion
in our new format.

It is also possible to generate textures in this format through stan-
dard 3D rendering packages, by the careful placement of area lights
in the scenes. Analogously, such maps could be captured from real
world materials via photography with appropriately placed lights
and reflectors.

The standard techniques for generating bump maps for a coarsely
tessellated model by tracing rays against a more finely tessellated
one can be easily extended to support this bump map representa-
tion, which will allow for animated articulated models with self-
shadowing surface detail.

We can easily extend this technique to support more channels in
order to produce more accurate lighting and shadows, at the ex-
pense of higher texture storage. Differing combinations of sam-
ple directions and lighting precomputation directions can be used,
for instance to provide more accurate shadows from dynamic lights
without increasing the storage needed for light maps.

Figure 3: Cave walls exhibiting self-shadowing from the flashlight
in Half-Life R© 2: Episode 2.

4 Conclusion

A form of self-shadowing can be easily added to radiosity bump
mapping by “baking” the light sampling basis into the actual bump
map data, with no decrease in performance or increase in texture
memory cost. We are able to make heavy use of this technique in
the games Half-Life R© 2: Episode 2 and Team Fortress 2.

References

BLINN, J. F. 1978. Simulation of wrinkled surfaces. In SIGGRAPH
’78: Proceedings of the 5th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 286–292.

ID SOFTWARE, 1997. Quake 2.

KAUTZ, J., HEIDRICH, W., AND DAUBERT, K. 2000. Bump map
shadows for OpenGL rendering. Tech. Rep. MPI-I-2000-4-001,
Max-Planck-Institut für Informatik, Saarbrücken, Germany.

MAX, N. L. 1998. Horizon mapping: shadows for bump-mapped
surfaces. In The Visual Computer, 109–117.

MCGUIRE, M., AND MCGUIRE, M. Steep parallax mapping. I3D
2005 Poster.

MCTAGGART, G., 2004. Half-life 2 shading. GDC Direct3D Tu-
torial.

c©2007 Valve Corporation. All Rights Reserved



REFERENCES REFERENCES

MITCHELL, J., MCTAGGART, G., AND GREEN, C. 2006. Shading
in valve’s source engine. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Courses, ACM Press, New York, NY, USA, 129–142.

OAT, C., AND SANDER, P. V. 2007. Ambient aperture lighting. In
I3D ’07: Proceedings of the 2007 symposium on Interactive 3D
graphics and games, ACM Press, New York, NY, USA, 61–64.

PEERCY, M., AIREY, J., AND CABRAL, B. 1997. Efficient bump
mapping hardware. Computer Graphics 31, Annual Conference
Series, 303–306.

POLICARPO, F., OLIVEIRA, M. M., AND COMBA, J. L. D. 2005.
Real-time relief mapping on arbitrary polygonal surfaces. In
I3D ’05: Proceedings of the 2005 symposium on Interactive 3D
graphics and games, ACM Press, New York, NY, USA, 155–
162.

SLOAN, P.-P. J., AND COHEN, M. F. 2000. Interactive hori-
zon mapping. In Proceedings of the Eurographics Workshop
on Rendering Techniques 2000, Springer-Verlag, London, UK,
281–286.

SLOAN, P.-P. 2006. Normal mapping for precomputed radiance
transfer. In I3D ’06: Proceedings of the 2006 symposium on
Interactive 3D graphics and games, ACM Press, New York, NY,
USA, 23–26.

TATARCHUK, N. 2006. Practical parallax occlusion mapping with
approximate soft shadows for detailed surface rendering. In SIG-
GRAPH ’06: ACM SIGGRAPH 2006 Courses, ACM Press, New
York, NY, USA, 81–112.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. In ICCV, 839–846.

WALD, I., BENTHIN, C., WAGNER, M., AND SLUSALLEK, P.
Interactive rendering with coherent ray tracing.

c©2007 Valve Corporation. All Rights Reserved


