
1

Since there’s a lot to get through and not much time, I’m going to move through most
of this fairly quickly. I’m also not going to talk much about the game itself, so if you
have no idea what this image is about, this talk isn’t going to help. There will be some
time at the end to ask questions, and both Michael and I will be around for a bit after
the talk.

2

What we did is add support for VR to TF2. If you have an Oculus Rift dev kit, just edit
the Properties for Team Fortress 2 in Steam and add –vr to your launch options, and
you’ll be in VR mode. This is an update to the game that shipped last week, and TF2 is
free to play. I’m going to describe what we did in TF2 as best I can with words and
pictures, but I encourage you to go check it out for yourself.

3

Most of this development happened on either an nVis ST-50 or on one of the foam-
core and duct-tape Oculus Rift prototypes that Palmer provided in the fall. Be grateful
that you’ll get to work with the dev kits they’re shipping now instead of either of
these options.

I’m going to talk quite a bit about the Rift today, but everything I say here also applies
to other VR head-mounted displays. It’s just that most of you are going to have the
Rift and probably won’t have an ST-50 or other display. We also experimented with
other tracking system, but you will have the Rift’s gyro-based tracking, so that’s what
I’m going to talk about.

4

Before we get to the in-game stuff there are a couple of development quality-of-life
things I wanted to mention. The first is that you really want to turn off Aero. The
compositing that Windows does in Aero adds at least a frame of latency when you
are running in a window. Do this in the “Personalize” option on the desktop context
menu. Just pick any non-Aero theme.

5

The other thing I wanted to mention… DVI or HDMI splitters can be very useful when
you’re testing a VR game. Unless your game can render the game view to a second
window, they will be the only way to see what the person wearing the display is
seeing.

We use a DVI splitter by Aluratek that works pretty well. Amazon has them for 80
bucks.

One thing to watch out for is the display ID that the splitter reports to Windows. You
may need to plug and unplug the inputs and outputs of your splitter in a particular
order to get the ID of the head mounted display to get passed through to Windows. If
the wrong ID is reported the Rift SDK won’t know where to put the window and will
refuse to recognize the device.

6

The actual process of getting an existing game running in VR is pretty straightforward.
You will probably have the basics up and running within a week. Then you only have
to do the other 95%. Hopefully what we’ve learned will help you save some of that
time. We think that our second game on the same engine will take about a man-
month.

At a high level, what I’m going to talk about today is latency, stereo rendering, how to
deal with the UI in stereo, approaches to integrating mouse and keyboard input in the
game, and some quick ways to make people sick and how to avoid them.

7

Do you remember about ten seconds ago when I said I was going to talk about
latency. Well I’m not. Having too much latency in your system is the best way to make
people sick, so it’s incredibly important. But giving latency the time it deserves would
take the whole rest of the session, so what I’m going to do instead is point you at a
couple of blog posts by a couple of smart guys. John Carmack and Michael Abrash
have both written posts that get into the details. I recommend reading both of them.

Here are the URLs, but if I were you, I would just Google their names and “latency”
and these posts will be the top hit.

8

Next up is stereo rendering. What should you actually draw to the screen to have
your game work in VR? Until you get this right, looking through the display is going to
break your brain.

9

When you get your display connected it will appear to windows as an extension of
your desktop. You need to get the game’s window up in the right spot on the desktop
or run full screen on the right adapter.

Once you do that you will need to split the window for the two eyes. On the Rift that
means you divide the 1280x800 display in half horizontally and end up with one
640x800 viewport for each eye.

Exactly how to get your engine to draw the two views is something that will vary
wildly from engine to engine. In Source it meant adding what were essentially “for
each eye” loops in the top-level rendering routines then fixing everything that was
broken by that. One of the biggest sources of stereo bugs for us were screen-space
effects. Things like the “I’m on fire” effect or the “I’m underwater” effect. I don’ t
think there was a single screen-space effect in TF2 that worked the first time.

10

These two viewports form a stereo pair, so they have slight different perspectives on
the world. We found it useful to use the concept of a “middle” eye that was the
player’s traditional viewpoint in the game and then have the left and right eye
positions be offset from that.

The projection matrix for each eye will be driven by what display you’re using. To
avoid VR motion sickness it is very important to use transforms that match the
physical attributes of the display. Anything else will cause mismatched signals in the
user’s brain and cause problems. In the case of the Rift, SDK will tell you what need to
know, so take a look at the SDK documentation for specifics. I’ll get more into VR
motion sickness in a bit.

11

Another thing you may have to deal with when rendering in stereo is player weapon
models if your engine draws different custom models for those. In the case of TF2 the
player weapon models end at about the elbow. That caused problems for some
models just because of the larger vertical field of view. Also, several of the input
modes we tried result in the weapon moving up and down within the player’s view,
so this exposed the edges of the model to the player. In VR mode in TF we don’t use
these custom models at all.

Instead we draw the third person model (with its head removed) under the user’s
view position. As the user moves their head around the model is moved around to
match so that the weapons are pointed in the right direction.

12

One last thing I want to mention before we move on to UI…

Unless you pre-distort the images you’re displaying in the Rift they are going to come
out looking something like this. The Lenses in the Rift apply significant pincushion
distortion.

13

The way to deal with that is to apply a barrel distortion to the image. Then the lenses
will back out the distortion you added and your lines will be straight again. The SDK
contains the necessary shader code to do this, and will report the values to plug into
the distortion function since they vary from display to display.

It might seem like this is a bug, but it’s actually a huge feature of the Rift. One of the
things that held VR back in the 90s was the difficult optics involved in letting your eye
focus on a large fov display that it’s so close to. Modern video cards are more than
capable of dealing with this in the GPU. We can trade significant weight and
complexity in the optics for a little more software, which is definitely a good trade.

14

Ok, so on to UI. First up, is why this is actually complicated. You can’t just draw your
UI to the frame buffer at half width and expect it to work.

15

Your eyes and your brain use a bunch of different factors to figure out how far away
something is. Here’s a partial list roughly ordered from most significant to least
significant. Many of these are cues that your games already provide as part of 3D
rendering. I want to focus on two of these.

16

By Occlusion, I mean “what stuff blocks out what other stuff”. I can tell that my hand
is closer than that gentleman in the 4th row because my hand is blocking out part of
him.

17

Another powerful depth cue is Convergence. Convergence is how far your eyes have
to physically rotate to focus on the object in question. For near objects they rotate
more than they do for farther away objects, relative to being parallel.

For objects that are really far away your eyes are basically parallel. That’s what you
are simulating when you show the same image to each eye.

18

This is why it’s a bad idea to draw the UI to the views directly. When two views of an
object are identical it tells your brain that they are at infinity, at least in terms of
convergence and stereo disparity. Each person reacts a little different when that cue
doesn’t match the others (like occlusions and size), but nobody has a good reaction.
Some users react badly enough that they can never actually get the two views of the
object in question to “fuse” and be treated by their visual system as one object. At
the very least you’re going to cause a bunch of eye strain and headaches if you do
this.

19

The other problem is the distortion shader and just the layout of pixels on the display
in general. The outer edge of the viewport is actually entirely hidden from the user.
Then there is a band that is significantly warped which causes visible filtering
artifacts. What you really want to do is get your UI into the least warped part of the
display, which is in the center.

20

It’s also easier to see the middle of the display than the edges. The center couple
degrees of your vision fall on a part of your retina called the “fovea”. About half the
information collected by your retina is collected at the fovea. If you want somebody
to be able to read something you need to either make it gigantic or put it where the
fovea can reach it.

Nobody finds it comfortable to turn their eyes far enough to aim their fovea at the
edges of the Rift display to read some bit of HUD.

21

So the HUD is a pain. If you can get away with no HUD at all, that’s probably your best
bet. I expect most new-for-VR games will go this way.

Unfortunately that wasn’t an option in TF2, so here’s what we did. We render the
HUD onto a render target then draw that texture on a quad that sits about 10 meters
in front of the user. The quad itself is about 60 degrees wide in terms of FoV. There
are still depth cue conflicts at that depth, particularly with the nearest part of the
floor and the player’s weapon. Fortunately that seems to resolve them enough for
most players to be comfortable, though. Even those numbers are debatable, though,
so they are configurable by ConVars, and we hope to learn what they ought to be
from users.

22

In our case we also draw the non-HUD UI on that same quad, which seems to work
fairly well.

23

One exception to all of this is the crosshair. This we do draw directly into the frame
buffer, but to figure out its stereo separation we cast a ray into the world and see
what you’ll hit. Then we draw the crosshair at that depth. This is a little hard to
demonstrate with images… you should really see it in the game to see what I’m
talking about. The key thing is that the edge of the crosshair is always going to line up
in both eyes with the edge of an object near the aim depth.

It’s a little odd to see the crosshair depth change, but it avoids convergence mismatch
and eye strain on the UI element that you spend the most time looking at.

24

Next up is user input.

25

Most first-person shooter input boils down to just a couple of things. You have one
2D device (like a mouse or the right thumbstick) to control your view. Then you have
another 2D device (like WASD on your keyboard or the left thumbstick) to control
how your character moves.

26

VR complicates this by adding three more axes of input from head tracking. The yaw,
pitch, and roll you get from head tracking need to be folded in with your existing view
controls to let the user tell you how they want to control their character. This
complicates both aiming and looking significantly because the two are no longer
directly tied together.

27

Another complication is the cord on the Rift itself. If you don’t give the user some
way to turn around with having to turn their heads, they are going to wrap
themselves up in the cable and not be able to turn any more.

28

Those 7 axes of input need to map to six axes of output. One of these is pretty
simple… you need to figure out which direction you’re going to move when you hit W.
Users expect strafing and reverse controls to be derived from the forward control, so
there’s really only one output for those two axes.

I also skipped Roll on the aim direction here. Maybe you have some weapons that
aren’t radially symmetric in your game, but we didn’t have to deal with that in TF2 so
we didn’t spend any time thinking about it.

One last thing before I get into the input modes we built: in our case, pitch and roll of
the headtracking input are always mapped 1:1 to pitch and roll of the view output.
And yaw is always just the “torso yaw” plus the head tracking yaw. Any time we
messed with headtracking we made people sick, so we don’t do it anymore.

29

The first mode we built for VR was pretty simple. Torso yaw rotation was controlled
with side-to-side motion on the mouse. Torso Pitch and Roll technically exist, but
they’re always zero in all of these modes. On top of torso rotation we add data from
the head tracker to get the view and aim angles, which are the same angles. You are
essentially aiming with your nose.

This worked ok, but we heard a couple complaints: One was that it’s actually pretty
difficult (and tiring) to aim by moving your head.

30

The other complaint about mode 0 was that some people found it strange to press W
and not move in the direction that their torso was facing. It was of that complaint
that mode 1 was born. Torso yaw was still mapped 1:1 to the mouse X axis. Aim and
look are still the same angles and still Torso+Head tracking. The difference is that you
move in the torso direction instead of the look direction. To help you keep track of
where your torso is, we also displayed the HUD in front of your torso so you could
look away from the HUD.

This all worked well enough with some of our other tracking systems, but as of right
now there is some yaw drift on the Rift dev kits. That means your torso and head drift
apart and eventually you can’t see the HUD or “forward” direction anymore.

31

Mode 2 was an attempt to address the aiming precision issue. This was the first mode
that involved unlocking the aim point from the center of the display. You can move
your aim point freely up and down in mode 2 as long as you keep it on the screen. If
you move left and right in the middle blue zone you do move your crosshair, but you
also apply 50% of that rotation to the torso. If you push against the edge of that 15
degree region you are moving the torso 1:1 with the mouse X axis. This mode also
works pretty well, but people complained that the view dragged the crosshair around
and changed your aim point. It also has some bugs that made head tracking not
match exactly in yaw.

32

From those complaints, mode 3 was born, and that’s what we’re shipping as the
default. In mode 3 you can move your crosshair freely within about a third of the
screen. If you push against the edges in yaw you will rotate your torso. If you bump
against the limits in pitch, you just can’t aim any higher or lower. The aim point is also
completely unaffected by head movement, so if you are aiming at something you can
look away and look back and your aim point will not have changed. Mode 4 is just
mode 3 but with your “move forward” direction set to your aim point instead of your
view point.

While we are happy with mode 3, we’re under no illusion that it is the final answer
input. VR is at the same point that first person shooters were before everyone
standardized on mouselook. It’s likely to take a few more years to settle on a
standard.

33

And now we come to the part of the presentation where we talk about motion
sickness. Hopefully none of you have sensitive stomachs.

VR motion sickness is a lot like seasickness in a couple respects: The first is that the
symptoms are similar and include headaches, nausea, and in some cases cold sweats.
The other is that the motion sickness induced by VR seems to be something that
people get used to over multiple days in the same way people get their sea legs.

34

This clip actually demonstrates two things you should not do…

Don’t change the user’s horizon line, ever. You can see here how the camera follows
the motion and rotation of the character’s head and so it rolls. Your actual head isn’t
going to roll when you get killed by an Eyelander, so the mismatch will make you sick.

The other thing this clip shows is the freeze cam. When you die in TF2 you get a nice
shot of whoever killed you. This causes significant problems for some people. All we
do is show the same image on the screen for a few seconds and ignore head tracking,
but some people are convinced that we’re actually moving the view backwards. It
was very strange.

These are specific cases of a more general rule: Don’t mess with headtracking. If the
user turns their head 27 degrees to the right and rolls it 3 degrees their view in the
game needs to turn 27 degrees to the right and roll 3 degrees. Anything else is going
to make people sick.

This video can be found here: http://www.youtube.com/watch?v=LPtHCeb_HPc

35

http://www.youtube.com/watch?v=LPtHCeb_HPc

In fact, involuntary motion of any kind seems to be bad. We had a bug for a while that
slid the camera to the side while in spectator mode, and for 25-50% of players that
was another wave of motion sickness.

36

The exception is moving the camera in the direction that it is pointing. Once we fixed
the spectator camera so the player was moving forward they had a much easier time.
And that same motion seems to be fine with just about everyone when they’re the
ones pressing ‘W’ to move forward.

There are a few things that happen in TF2 that trigger motion sickness, but aren’t
things we can remove for gameplay reasons.

37

Rocket Jumping, for one. The fact that you’re looking down when you do it seems to
be part of the problem. People don’t seem to have the same issues with Sticky
jumping.

38

Then there’s the Scout. He runs at something like 22 miles per hour, and moving
around at that speed causes issues for many people. TF2 is a game with a frenetic
pace in general. Many of these issues would be less prevalent in a slower paced
game.

39

The one that surprised us the most is stairs or ramps, which is what stairs in TF2
actually are. Some people get a wave of motion sickness whenever they move up or
down stairs in the game. We think this is related to the “move forward” rule. When a
player runs up stairs they’re actually moving up and forward at the same time, and
those two can be significantly mismatched if they are actually looking down.

40

So that’s most of what we learned with TF2. There is still plenty to figure out, though.

For instance, how will pulled back ¾ view games like Dota work in VR?

How will third person avatar games (like Arkham Asylum) interact with head tracking?

We’re just getting started on figuring out what VR can do, and how to interact with it.
I’m excited to see where we end up.

41

42

