# Biofeedback in Gameplay: How Valve Measures Physiology to Enhance Gaming Experience

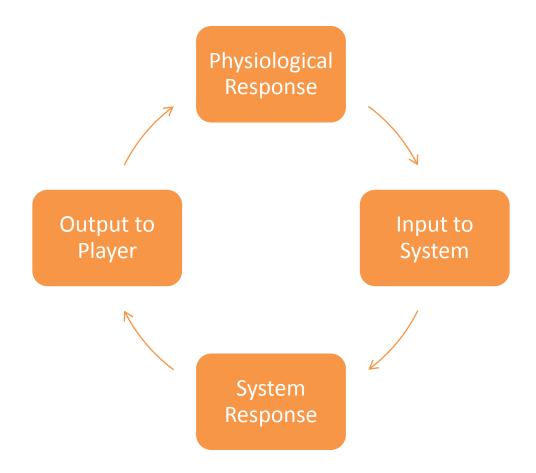
Mike Ambinder, PhD March 3<sup>rd</sup>, 2011

GDC



#### **Goals of this Presentation**

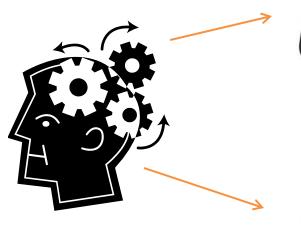
- Provide overview of biofeedback
- Discuss potential applications
- Use examples to show costs and benefits
- Discuss future directions and implications


#### **Biofeedback Overview**

Biofeedback: measurement, display, analysis, modification, manipulation, and response of physiological signals
Using biological indicators to index sentiment/emotion

#### **Biofeedback Overview**

Feedback loop possible where subsequent signals depend on prior states
Emotional states not stable
Transient
Volatile


Subject to manipulation



#### Why Biofeedback?

## Current control schemes

- Provide one dimension of input
- Map player intent to onscreen action
- Ignore other aspects of cognition
- Ignore player sentiment

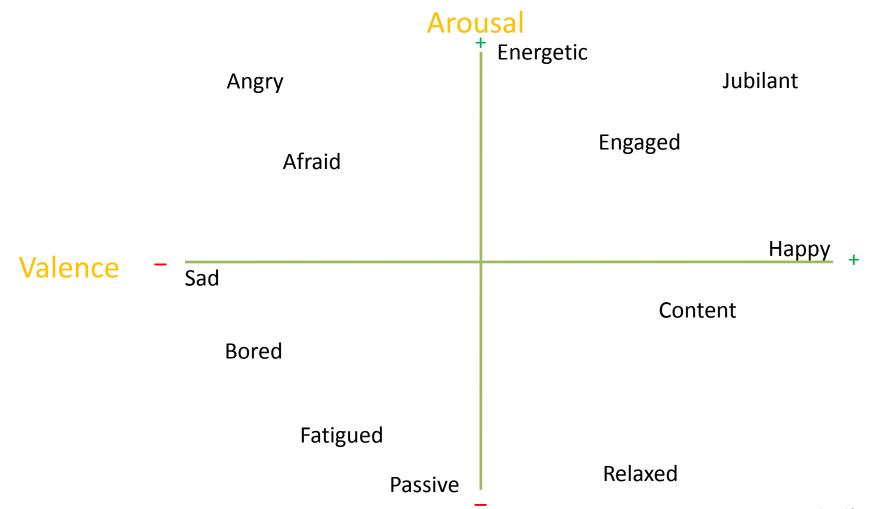








#### Why Biofeedback?


- What about player sentiment?
- Adding emotional input incorporates new (and previously ignored) dimension of player input
- Tailor more immersive, dynamic, and calibrated game experience



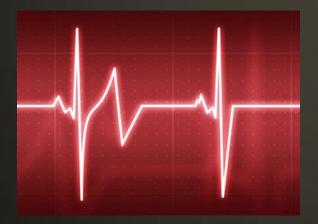


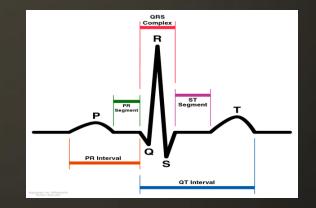
#### Emotion

Subjective, internal state induced by response to (usually) external events
Vector
Magnitude (arousal)
Direction (valence)



Adapted from Lang (1995)


#### **Physiological Signals**


### Heart rate

- SCL (skin conductance level)
- Facial expressions
- Eye movements
- EEGs (Electroencephalography)
- Others (pupil dilation, body temperature, posture, etc.)

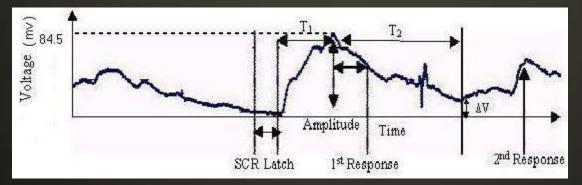


# Beat to beat interval of blood flow Measure baseline rate and deltas over time





http://modmyi.com/forums/ipod-news/711048-nike-heart-rate-monitor-ipod-set-june-1st-release.html http://en.wikipedia.org/wiki/Electrocardiography

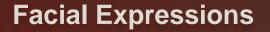

#### **Heart Rate**

+Index of arousal +Cheap +Easy to measure +Familiar + Fourier transform to get valence?

- Prone to movement artifacts
- Delayed onset to stimuli
- Difficult to determine valence

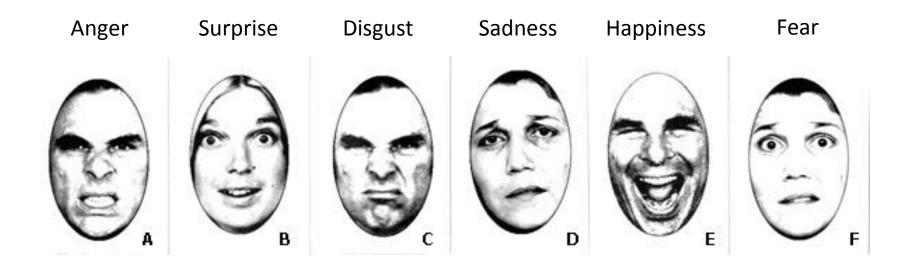


Electrical resistance of the skin
Chart waveform of arousal over time
Get responsive and anticipatory spikes




http://www.tbiomed.com/content/2/1/11/figure/F5?highres=y

#### SCL


+Index of arousal + Tonic/Phasic responses + Minimal lag to stimuli +Cheap + Robust to movement +Lots of measurement sites

- Difficult to associate eliciting events
- Difficult to determine valence
- Range is variable across subjects



Record movement of facial muscles
Classify emotion (both valence and arousal)
Can be done remotely or via EMG






#### **Facial Expressions**

Index of valence
Index of arousal
Measures

instantaneous
responses

- Can be intrusive
- Expensive
  - (at the moment)
- Subject to bias
- Requires training or a black box



 Remote (or mounted) cameras measure reflectivity off of pupils

- Record where eyes are looking in real-time
- Get saccades (movements) and fixations

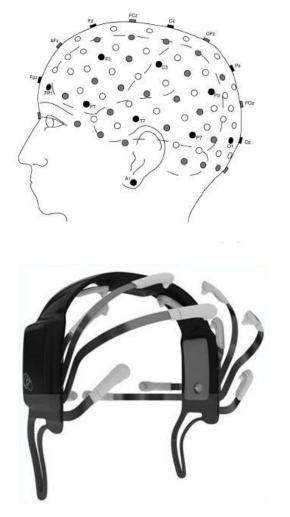


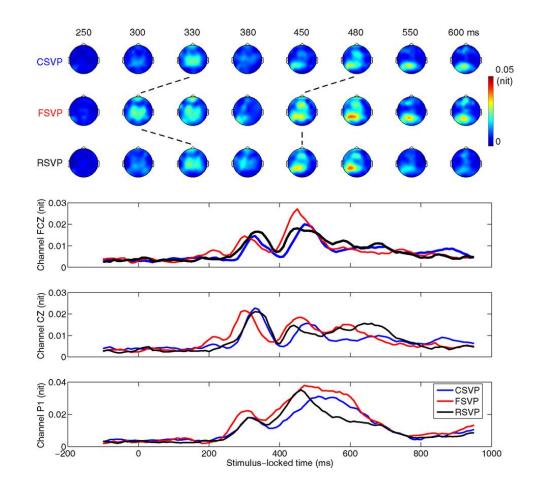
#### **Eye Movements**

+Index of attention +Rudimentary index of thought +Index of arousal (with pupil dilation) +Unique +Reliable

- Very expensive

 Requires extensive analysis


Can be intrusive →
 lead to subject biasing
 eye movements




- Measure electrical potentials of the brain
- Primarily time-based signals
- Coarse measures of location
- Get frequency spectra and spike latency



http://www.riversideonline.com/health\_reference/Test-Procedure/MY00296.cfm



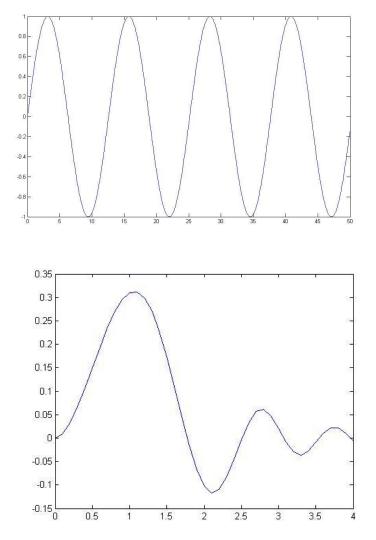


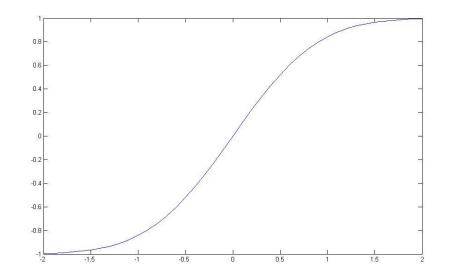


Index of arousal
Index of valence
Rudimentary insight into thought

- Very expensive
- Very intrusive
- Very noisy
- Difficult to validate

#### Others


Pupil Dilation - arousal
Body temperature - arousal
Body posture - valence


Couple with pupil dilation to get frustration

Lots of stuff we haven't thought about

#### **Potential Applications**

- Passive viewing of biofeedback data
- Modify game experience based upon player sentiment/emotion/internal state
  - L4D director with biofeedback
  - Adaptive realtime difficulty adjustment
  - Detect and respond to disengaged players
- Determine optimal arousal patterns
  - Can manipulate gameplay to induce





#### **Potential Applications**

Physiological data as direct input
Tie health to arousal
In-game prompts tied to emotional state
NPCs respond dynamically
Required valence/arousal to proceed

#### **Potential Applications**

- Matchmaking/Profiling
- Spectate competitive matches
- Multiplayer Mechanics
  - Detect teammate in trouble
  - Earn points for eliciting responses
- Playtesting



- Modification of AI Director in Left 4 Dead 2
- Addition of physiological input to Alien Swarm
- Eye movements as active controls in Portal 2









Passive viewing of physiological inputs
Implications for multi-player
Playtesting Applications



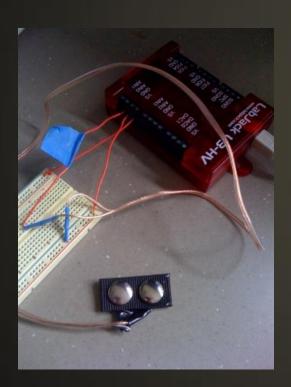
#### **Modification of AI Director**

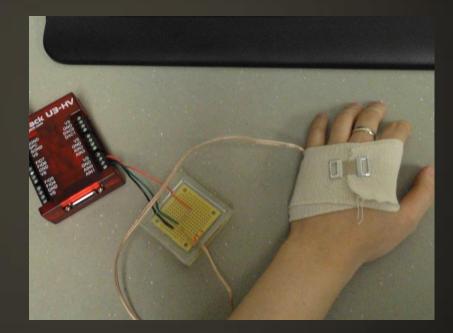
 Director creates dynamic, variable experience in Left 4 Dead series

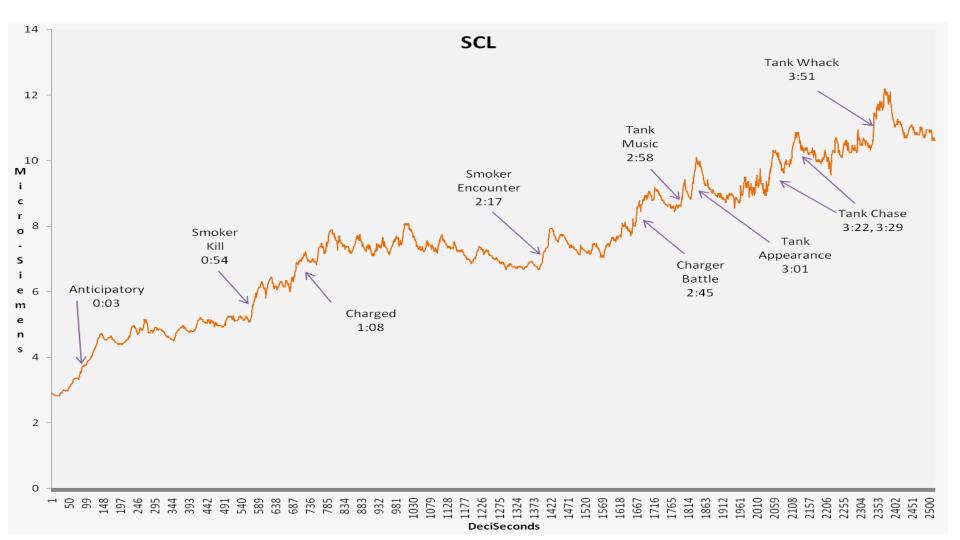
- Modifies enemy spawns, health and weapon placement, boss appearances, etc.
- In-game encounters determined by estimated arousal level

#### **Modification of AI Director**

 Will replacing estimated arousal with actual arousal create a more enjoyable experience?
 Con we determine entimel arousal petterne?


Can we determine optimal arousal patterns?


#### **Director Algorithm**


Represent Survivor intensity as single value
Increase it in response to in-game trauma
Decay intensity to zero over time
Create peaks and valleys



# **Current Hardware Solution**







#### **Analysis of SCL Data**

- Categorize game events
- Record survey responses
  - Enjoyment, frustration, etc.
- Quantify waveform
  - Spike frequency, size of range, average lag, etc.
- Data-mine (correlation, regression, frequency analysis, PCA, etc.)

| 1290891060 player_biofeedback_scl | 1.161238                | 228 |
|-----------------------------------|-------------------------|-----|
| 1290891060 player_biofeedback_scl | 1.161238                | 229 |
| 1290891061 item_pickup            | 63 first_aid_kit        |     |
| 1290891061 spawner_give_item      | 63 weapon_first_aid_kit |     |
| 1290891061 player_use             | 63                      | 407 |
| 1290891061 item_pickup            | 63 first_aid_kit        |     |
| 1290891061 spawner_give_item      | 63 weapon_first_aid_kit |     |
| 1290891061 player_use             | 63                      | 407 |
| 1290891061 player_biofeedback_scl | 1.145869                | 230 |
| 1290891061 player_biofeedback_scl | 1.156099                | 231 |
| 1290891061 player_biofeedback_scl | 1.140777                | 232 |
| 1290891061 player_biofeedback_scl | 1.156099                | 233 |
| 1290891061 item_pickup            | 65 first_aid_kit        |     |
| 1290891061 spawner_give_item      | 65 weapon_first_aid_kit |     |
| 1290891061 player_use             | 65                      | 406 |
| 1290891061 item_pickup            | 65 first_aid_kit        |     |
| 1290891061 spawner_give_item      | 65 weapon_first_aid_kit |     |
| 1290891061 player_use             | 65                      | 406 |
| 1290891061 player_biofeedback_scl | 1.145869                | 234 |
| 1290891061 use_target             | 411 C_WeaponSpawn       |     |

#### 3. Overall, I found today's experience enjoyable.

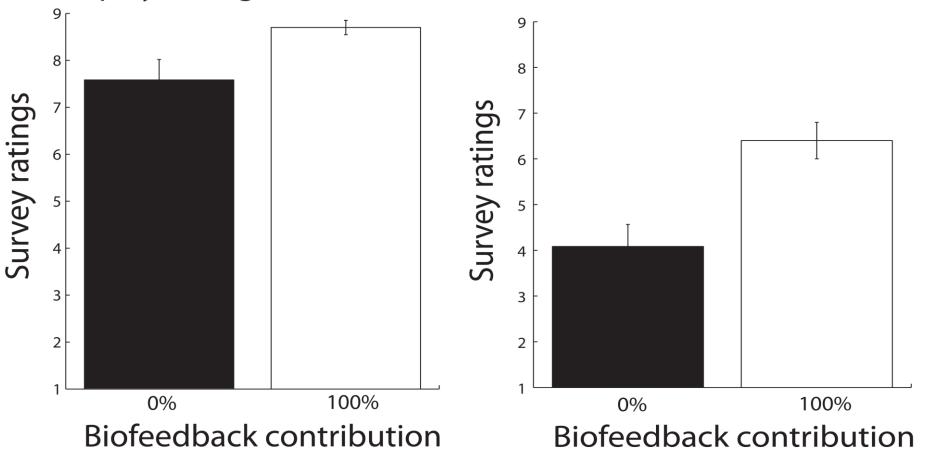
 1
 2
 3
 4
 5
 6
 7
 8
 9

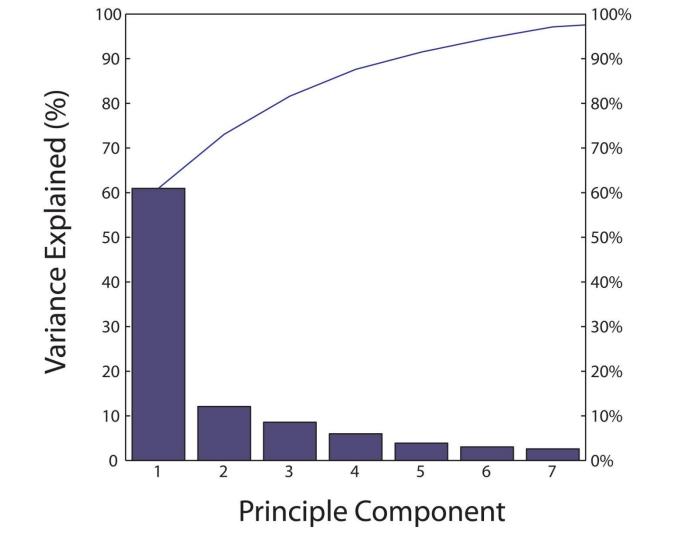
 (strongly disagree)
 (strongly agree)
 (strongly agree)

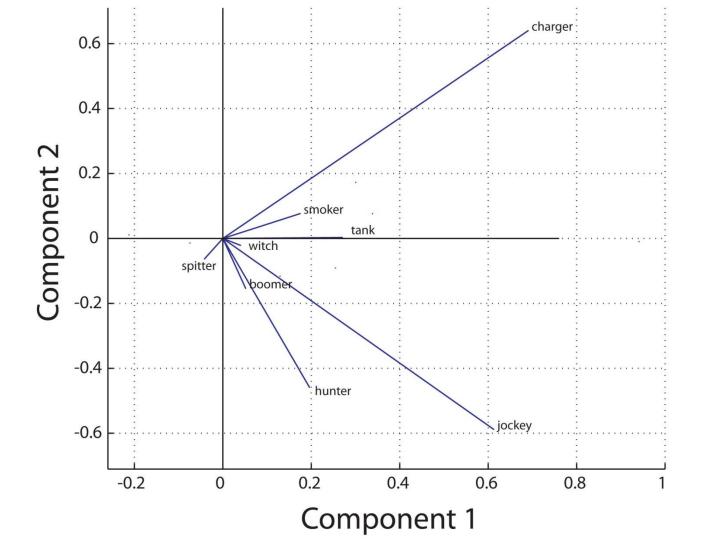
#### 4. Overall, today's experience was frustrating.

 1
 2
 3
 4
 5
 6
 7
 8
 9

 (strongly disagree)
 (strongly agree)


#### 5. Overall, today's play session was challenging.


 1
 2
 3
 4
 5
 6
 7
 8
 9


 (strongly disagree)
 (strongly agree)

How enjoyable was the playtesting session?

How challenging was the playtesting session today?







| SCLs      | nSCB  | Mean SCR<br>Amplitude | •    | •     | Min Spike<br>Amp | Max<br>Spike<br>Amp | Mean Spike<br>AreaSum |                           |
|-----------|-------|-----------------------|------|-------|------------------|---------------------|-----------------------|---------------------------|
| JCLS      | nsen  | Amplitude             | Апр  | Nange | Апр              | Апр                 | Areasum               |                           |
| Question4 | -0.10 | -0.09                 | 0.00 | -0.07 | -0.08            | -0.07               | 0.07                  | %Average excitement       |
|           |       |                       |      |       |                  |                     |                       |                           |
| Question5 | -0.09 | 0.25                  | 0.15 | 0.22  | -0.07            | 0.22                | -0.22                 | %Average frustration      |
|           |       |                       |      |       |                  |                     |                       |                           |
| Question6 | -0.39 | -0.03                 | 0.02 | 0.01  | -0.13            | 0.00                | 0.06                  | %Average challenge factor |

#### Results

- Measured arousal produces greater enjoyment than estimated arousal
- Have rudimentary insight into events which elicit enjoyment
- Progress on optimal arousal patterns



Physiological signals are viable inputs
More work needed to 'quantify' enjoyment
How well can we shape the arousal curve?



#### Alien Swarm + Biological Input

Top-down, team-based action shooter Create mod with time-based constraint Kill 100 enemies in 240 seconds. Timer indexed to arousal (SCL) Highly aroused-> timer speeds up • Relax  $\rightarrow$  timer reverts to baseline

#### Alien Swarm + Biological Input

- Can you create a compelling gameplay experience using physiological signals as direct input?
- What kind of problems will arise?
  - Feedback loop?
  - Possible manipulations of signal?

#### **Problems**

# Positive feedback loop exists

- Increase in arousal leads to increase in arousal . . .
- Decay factor helps

Clarity of relationship between arousal and in-game events not always clear

#### **Experiment Summary**

Novel gameplay experiences possible
Experience qualitatively different
Aware of both gameplay and emotional response
LOTS of work required to tweak algorithm



#### **Play Portal 2 With Your Eyes**

- Puzzle-based FPS
- Traditional control schemes use single control to shift viewpoint AND crosshair
- Decouple viewing and aiming
  - Use hand to move
  - Use eyes to aim

#### **Play Portal 2 With Your Eyes**

- Is it enjoyable to use your eyes to aim?
- How do you change gameplay if you add more degrees of freedom to aiming?
- Since the eyes move faster than the wrist, is speed of movement correlated with enjoyment?

#### **Portal 2 Eyetracker Algorithm**

Use eyetracker to extract eye's X,Y position
Feed those coordinates into game engine
Redraw cross-hair at current eye position
Update at 60 Hz



#### **Experiment Summary**

Eyes are viable aiming controllers
Decoupling aiming/viewpoint is a plus
Interesting question of how to use blinks?
Best suited to more action-oriented games
Consumer-grade eye trackers are far away

## Multiplayer

- Show representations of other player's emotional state?
- Is it engaging to view vital signs of teammates/opponents?
- Is it a useful game mechanic?
  - Detect distress?



#### **Multiplayer Summary**

Most enjoyable thing we've done so far
High sense of satisfaction when opponents spike
Entertaining to view teammates response
Not useful (yet)

### **Playtesting Applications**

Create more objective responses
Lots of biases in current playtesting procedures
Quantify responses
Encourages rapid iteration on player state

#### **Overall Summary**

- Adding physiological signals opens up new dimensions of gameplay
- Novel control schemes worth exploring
- Consumer-grade devices to track both valence and emotion are needed

#### **Future Directions**

Matchmaking on physiological profiles
Experimentation with gameplay mechanics
Quantify optimal arousal patterns
Investigate other hardware platforms
Incorporate techniques into playtesting

#### Acknowledgements

- Steve Bond
- Jeff Lin
- Mike Durand
- Charlie Burgin
- Jonathan Sutton
- Lars Jenvold
- Chandler Murch



# Thanks!!!!

mikea@valvesoftware.com