
Rendering Wounds in
Left 4 Dead 2

Alex Vlachos, Valve
March 9, 2010

Outline

• Goals

• Technical Constraints

• Initial Prototype

• Final Solution

Left 4 Dead 1 Wounds

• Built-in

• 5 variations only

• Requires texture support

• Always Fatal

The Pitch
Gray Horsfield lives for destruction

(Gray is a Visual Effects Artist at Valve, previously at Weta)

Goals

• Accurate location of wounds

• Wounds match weapon strength

– Remove limbs, torso, head, half of body

• Separate wound geometry & textures

• Several active/visible wounds per model

– Shipped up to 2 active wounds

Technical Constraints

• Already at memory limits on the Xbox 360

• Didn’t want heavy CPU setup

• Ideally wanted a GPU solution

• No additional base meshes except for
wound geometry
– Better for artists to author

– Share wound models among many infected

Common Infected Variation

• Simplest infected has over 24,000 variations

• We didn’t want to add another variable to this

Things We Didn’t/Couldn’t Do

• Model variations of each infected with all
combinations of 1 and 2 wounds

• Use different index buffers to cull polygons –
not friendly with LOD and low quality wound
silhouettes

• Auto-generate new polygonal meshes with
holes cut for wound models

• Author different body parts/sections with
different wound variations

Initial Prototype

• Use pose-space ellipsoids to cull pixels

• Fill hole with wound model

Culling Inside an Ellipsoid

• Vertex Shader calculates relative distance

• Interpolate this value and clip / texkill

Benefits

• No additional vertex buffer data

• Still only one draw call for full model

• Wounds are a separate draw call with
their own textures:

Problems

• Hard cut looked unnatural

• Wound models looked strange
because they required a lip
around the wound border

• Lacked blood on the clothes and
skin near the border of the wound

• Required an exact geometric fit
with the model

Projected Texture Experiment

Try using a projected texture and use alpha
to kill pixels

Abdominal Wounds

• Projected texture will affect his back

• So let’s combine the texture and ellipsoid

Blood Layer

• The texture projection is aligned with an
axis of the ellipse

• We multiply the blood layer by a gradient
to prevent the blood from spraying too far

Vertex Shader Code
// Subtract off ellipsoid center

float3 vLocalPosition = (vPreSkinnedPosition.xyz - vEllipsoidCenter.xyz);

// Apply rotation and ellipsoid scale. Ellipsoid basis is the orthonormal basis

// of the ellipsoid divided by the per-axis ellipsoid size.

float3 vEllipsoidPosition;

vEllipsoidPosition.x = dot(vEllipsoidSide.xyz, vLocalPosition.xyz);

vEllipsoidPosition.y = dot(vEllipsoidUp.xyz, vLocalPosition.xyz);

vEllipsoidPosition.z = dot(vEllipsoidForward.xyz, vLocalPosition.xyz);

// Use the length of the position in ellipsoid space as input to texkill/clip

float fTexkillInput = length(vEllipsoidPosition.xyz);

// We use the xy of the position in ellipsoid space as the texture uv

float2 vTextureCoords = vEllipsoidPosition.xy;

Other

• Depth-only and shadow render passes

– You don’t want phantom shadows

• Hi-Z performance issues

• Wound models are attached to base
skeleton of infected model

Multiple Wounds

We limited the final solution to 2 active wounds

Upper & Lower Back

Groin

Arms & Legs

Abdomen

Head Wounds

Half Body

Axe & Sword Slashes

Upper Body

Stats

• Up to 54 unique wounds per model

• Each wound is only 13% of the memory
cost of the old system in Left 4 Dead 1

• Vertex shader costs 15 instructions
– Fill-bound, so rendering perf impacted

minimally

• Pixel Shader costs 7 instructions

Summary

• Wound models separate from base mesh

• Use pose-space ellipsoids for outer limiting
cull volume

• Use projected texture for rough edges and
blood layer

• Additional details about our rendering:
http://www.valvesoftware.com/publications.html

http://www.valvesoftware.com/publications.html
http://www.valvesoftware.com/publications.html

Thank you!

Alex Vlachos, Valve

alex@valvesoftware.com

