
Natural Interaction with a

Virtual World

by

Ilya D. Rosenberg

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2013

Ken Perlin

c© Ilya D. Rosenberg

All Rights Reserved, 2013

Dedication

To my beautiful daughter Lilu, who reminded me of the incredible wonders possible

in this universe and gave me the motivation I needed to get reinstated into the

graduate program at NYU and complete my dissertation.

iii

Acknowledgments

I would like to thank New York University, the Graduate School of Arts and

Sciences, the Courant Institute and the Media Research Lab for accepting me

into the graduate program and supporting my studies. I would especially like to

thank Margaret Wright, the Director of Graduate Studies and Rosemary Amico,

the Assistant Director of the CS department for helping me get reinstated in the

program and putting up with my uncanny ability to do everything in the most

difficult way possible and at the last minute.

I would like to thank my thesis advisor, Dr. Ken Perlin, who was flexible

enough to let me work on what I wanted, yet caring enough to support me no

matter what sort of issues I was having. Your insights and encouragement really

laid the groundwork for my doctoral work and I think of you not only as a caring

mentor but as a good friend.

I would like to thank all the other professors at the Media Research Lab, es-

pecially Dr. Denis Zorin and Dr. Davi Geiger for working with me on my fluid

rendering and stereo vision projects. I learned a tremendous amount from the two

of you, and will be forever grateful for your insights and guidance.

I would like to thank my teachers at Princeton, especially my advisor Dr.

Brian Kernighan, who encouraged me to create technologies ten times better than

what existed before, Dr. Thomas Funkhouser, who got me interested in computer

graphics and Dr. Robert Sedgewick, who made me fall in love with algorithms and

data structures.

iv

ACKNOWLEDGMENTS

I would like to thank my office mate, Yotam Gingold, and the other students in

the program including Adrian Secord, Matthew Grimes, Philip Davidson, Daniel

Howe, Elif Tosun, Evgueni Parilov, Casey Muller, Denis Gueyffier, Denis Kovacs,

Harper Langston, John Lee and Murphy Stein. Your warm friendship and brilliant

but wacky minds made the Media Research Lab a very exciting place!

I would like to thank my co-founders and interns at Touchco, including Nadim

Awad, Julien Beguin, Tomer Moscovich, Charles Hendee, Alex Grau and Merve

Keles. Working with you was a wild ride, and it’s truly incredible what we accom-

plished in the short nine months of Touchco’s existence.

I would like to thank NYU’s industrial liaison Robert Fechter for supporting

the commercialization of IFSR and being such a pleasure to work with.

I would like to thank Alex Jaoshvili and Dr. Richard Brandt. Alex dragged me

into the whole messy business of working with FSR due to his desire to improve the

game of tennis and Richard supported and advised our first startup, SmartLines.

Even though we didn’t quite make it, I learned a tremendous amount working with

the two of you.

I would like to thank Franklin Eventoff, the inventor of FSR, for showing me

the ropes of FSR design and fabrication and building prototypes for us in his

basement.

I would like to thank Jeff Han for introducing me to multi-touch interaction

and using my lava-lamp app in a Ted talk!

Assembling hardware required custom manufacturing and support from many

vendors. I would like to thank all the companies that have helped us with the

v

ACKNOWLEDGMENTS

manufacture of IFSR sensors including Sytek, Parlex and Nissha. I would especially

like to thank Libing Zhang. I can’t thank you enough for the countless varieties of

experimental sensors that you built for us and for sharing your expertise in screen

printing and manufacturing technology.

I would like to thank Ken Birdwell, Jeep Barnett, Jay Stelly, Chris Green,

Brian Jacobson, Richard Lord, Steve Kalning, Lars Jensvold, Steve McClure, and

everyone else at Valve for your enthusiasm and support of the RTPIE project.

Working with you guys was a blast!

I would like to thank my college roommate and best buddy Rishi Sanyal for

stumping me with various deep questions about photography and electronics and

for always being there to talk about whatever was bothering me, and most of all,

for taking as long to finish your PhD as I did.

I would like to thank everyone at Lab126 that supported IFSR and made work-

ing there fun, including Dave Buuck, Joe Hebenstreit, Aaron Zarraga, Connor Wor-

ley, John DePew, Brad Bozarth, Nidhi Rathi, Marcia Almanza-Workman, Tiffany

Yun, Ed Liljegren, Reuben Martinez, Bob Olson, Chris Li, Sun Han, Ben Rosette,

Omar Leung, Jano Banks and J.S. Yang.

I would like to thank my parents Yuri and Laura, brother Mark and grandpar-

ents Vadim, Lena and Yosif for their unconditional love and support. Mom and

dad, thank you for your bravery in leaving the former Soviet Union and bring-

ing me and my brother to the United States. Vadim, thank you for making me

passionate about inventing new things, teaching me to take apart and fix almost

anything, and instilling in me a curiosity for everything in the universe from a very

vi

ACKNOWLEDGMENTS

early age. Yosif, thank you for asking me when I’m going to be done with my PhD

every single time I came to visit. I hope I have made all of you proud.

Last but not least, I would like to thank my loving wife Fang for supporting

all my projects and ideas, helping me start Touchco, and putting up with my

unconventional work habits. I couldn’t have done it without you!

vii

Abstract

A large portion of computer graphics and human/computer interaction is con-

cerned with the creation, manipulation and use of two and three dimensional ob-

jects existing in a virtual world. By creating more natural physical interfaces and

virtual worlds which behave in physically plausible ways, it is possible to empower

non-expert users to create, work and play in virtual environments. This thesis is

concerned with the design, creation, and optimization of user-input devices which

break down the barriers between the real and the virtual as well as the development

of software algorithms which allow for the creation of physically realistic virtual

worlds.

viii

Table of Contents

Dedication iii

Acknowledgments iv

Abstract viii

List of Figures xiii

Introduction 1

0.1 Motivation . 1

0.2 Thesis Organization . 2

1 SGMGPU - Semi-Global Matching on a GPU 3

1.1 Introduction . 3

1.2 Algorithm . 5

1.3 GPU Implementation . 6

1.4 Results . 7

1.5 Follow-up Work . 14

2 RTPIE - Real-Time Particle Isosurface Extraction 16

2.1 Introduction . 16

2.2 Related Work . 21

2.3 Algorithm Overview . 28

ix

TABLE OF CONTENTS

2.4 Block Subdivision . 30

2.5 Marching Slices . 33

2.5.1 Data Structures . 34

2.5.2 Seeding . 35

2.5.3 Execution . 36

2.5.4 Algorithm Correctness . 38

2.5.5 Memory Requirements and Performance 39

2.6 Transparency and Culling . 41

2.7 Particle Lookup Cache . 42

2.7.1 Data Structure and Algorithm 43

2.7.2 Memory Usage and Performance 45

2.8 Results . 47

2.9 Conclusion and Future Work . 55

3 IFSR - Interpolating Force Sensing Resistance 56

3.1 Introduction . 56

3.1.1 The Invention of IFSR . 58

3.1.2 Birth of Touchco . 59

3.1.3 Acquisition . 61

3.2 Related Work . 62

3.2.1 Optical Sensing . 62

3.2.2 Capacitive Sensing . 63

3.2.3 Resistive Force Sensing . 66

3.3 Our Contribution . 67

x

TABLE OF CONTENTS

3.3.1 Operating Principle . 69

3.3.2 UnMousePad Construction 70

3.3.3 Scanning the UnMousePad 74

3.3.4 Avoiding False Positives . 75

3.3.5 Interpolation Linearity . 76

3.4 UnMousePad Characteristics . 83

3.4.1 Electronics . 83

3.4.2 Scan Rate . 84

3.4.3 Power Consumption . 86

3.4.4 Sensitivity . 87

3.4.5 Resolution . 90

3.5 Data Processing and Touch Tracking 92

3.5.1 Camera-Based Hand Visualization 96

3.6 Applications . 98

3.6.1 Bendable Sensors . 98

3.6.2 Touch on Back . 99

3.6.3 Medical and Industrial Pressure Imaging 101

3.6.4 Sensing Through Paper and Flexible Displays 102

3.6.5 Touch Screens . 103

3.6.6 Musical Instruments . 105

3.6.7 Games . 106

3.6.8 Design and Simulation . 108

3.6.9 New Gestures . 110

xi

TABLE OF CONTENTS

3.6.10 Isometric Control . 111

3.7 Conclusion and Future Work . 112

Conclusion 114

Bibliography 115

xii

List of Figures

1.1 Simplified GPU data flow diagram. Differences between the left

and right images are fed through the vertical and horizontal sweep

shaders which add errors to a 320x240x64 error volume. Disparity

is extracted for the left eye and right eye images and compared to

generate a consistency map. Inconsistent pixels are filled in with

depth from neighboring pixels and then a shader is used to generate

a heat map based on the depth of the pixels in both left and right

images. 6

1.2 We used an nVidia 7900GTX video card to run the SGM algorithm

and a Point Grey Research Bumblebee camera to acquire stereo

images. 8

1.3 Screenshot of SGMGPU interactive program running with a 320 x

240 image resolution. The computed disparity map, shaded with a

heat-map is in the upper left, and a real-time depth-of-field shader

applied to the input video is shown on the upper right. The left and

right input images are shown below. 8

1.4 One of the autonomous LAGR robots. The SGM algorithm was

used to generate ground-truth disparity data to train LAGR’s neural

networks for obstacle avoidance. 9

xiii

LIST OF FIGURES

1.5 After training a set of neural network classifiers with depth infor-

mation extracted using our algorithm, the LAGR robots were able

to classify the space around them as navigable (blue) and obstacle

(red). 10

1.6 Comparison of SGMGPU with the Triclops SDK’s algorithm on

LAGR test data. The upper images are the left and right stereo

input images. The bottom left shows the output of the Triclops

SAD algorithm. The bottom right shows the output of our SGM

algorithm. Note that our algorithm is much better at resolving the

leafy branch in the right side of the images as well as the trees in

the distance. Furthermore, we are able to extract depth for the

entire image frame, and accurately report occluded areas in blue.

In contrast, the SAD algorithm has an area all around the image

for which depth is not computed and has several black and white

splotches where depth was not computed correctly. 11

1.7 Second comparison of SGMGPU with the Triclops SDK’s algorithm

on LAGR test data. The upper images are the left and right stereo

input images. The bottom left shows the output of the Triclops

SAD algorithm. The bottom right shows the output of our SGM

algorithm. Note that our algorithm is much better at resolving the

shape of the tree stump, and produces a continuous depth gradient

along the path, while the SAD algorithm exaggerates the size of the

tree stump and outputs depth in splotchy discontinuous steps. . . . 12

xiv

LIST OF FIGURES

1.8 Extraction of a disparity map from a stereogram. No special modi-

fications to the software were necessary for it to see a depth image

within the stereogram. To create the input, we simply cropped two

images from the original stereogram. For the left eye image, we re-

moved one vertical band of the pattern from the right side of the

source image, and for the right eye image, we removed a band of

the same size from the left side of the source image. 13

1.9 The 16 passes used in the CUDA implementation of the SGM algo-

rithm. For the 4 out of 16 passes shown in detail, each set of con-

nected dots and arrows represents the work done by a single thread.

For the diagonal passes, threads loop around whenever they reach

the top or bottom of the error volume. 15

2.1 Several different lava lamps rendered in realtime with our algorithm. 17

2.2 Interactive lava lamp simulation running on an FTIR table. 17

2.3 Blue gel in the Portal 2 game. Courtesy of Valve Corporation. . . . 18

2.4 Screenshot of the iLava virtual lava lamp iPhone app. 19

2.5 Virtual clay sculpting software. The underlying particle simulation

is shown on the left. Skin is rendered over the sculpted particles

using our method on the right. 20

2.6 A fountain rendered in real-time using our technique in a fully in-

teractive video game environment. 22

xv

LIST OF FIGURES

2.7 This simulated fountain is too big to render in a single marching

cubes volume, so it is seamlessly split into multiple blocks, which

are shown here in different colors. 30

2.8 2D illustration of block subdivision. The green box contains the

polygonized surface and red box outlines the margin. 31

2.9 Data structures used in the Marching Slices algorithm. 33

2.10 Cases where seeding fails to find local minima a) at the bottom of

a surface, seeding is sometimes off by a single slab b) inside of an

upright bowl shape there may be no seeds. 40

2.11 Cutaway diagram of insertion into particle cache. 44

2.12 Screenshots of simulations used for performance comparison. Top

row from left to right: fountain, blob, and explosion simulations.

Bottom row: wireframe views of simulation with blocks identified

by different colors. 48

2.13 Performance comparison (memory is measured in MB). Rc is the

cutoff radius, T is the threshold (a threshold of 0.2 corresponds to

an isosurface of radius 1 for a single particle), S is the size of the

cube grid. 49

2.14 Here the blob monster is shown in the game environment with tex-

tured skin and fully extended tentacles. 52

xvi

LIST OF FIGURES

2.15 Procedural animation of blob monster. Squares represent particles,

and the color of the square represents the particles function (yellow

particles belong to the brain, light blue particles are structural, dark

blue particles are feet, and green particles are arms. Yellow lines

show the tree structure of the blob, and red lines represent “tendons”

which apply forces to hold the blob together. 53

2.16 Here, the blob monster reassembles after being blown apart by an

explosion. Note that it formed several mini monsters which are

merging back together to form a big monster. 54

3.1 Writing on an UnMousePad and the resulting force image (warmer

colors represent greater pressure). The red dot corresponds to the

high pressure point created by the pen tip. 57

3.2 The desktop of the future concept device which was developed at

Touchco combined a 24” transparent touch surface on top of an LCD

with a second forward facing 24” LCD. The bottom LCD was used

to display custom user interface controls. Here we show a drawing

application, where the bottom touch-display shows controls and a

detail view while the main display shows an overview of the final

image. 60

3.3 Finger touches remain far apart, but a stylus must be tracked precisely. 68

xvii

LIST OF FIGURES

3.4 Discrete versus bilinear sampling. a) Area response of one sensel

of a discrete FSR sensor (left) vs. an IFSR sensor (right). b) Re-

construction of pen position with a discrete FSR sensor yields an

error in position (left), while an IFSR sensor properly reconstructs

position with minimal error (right). 69

3.5 8.5” x 11” UnMousePad with drone wires 71

3.6 The UnMousePad is constructed by sandwiching together two sheets

with electrodes at right angles. The electrodes are covered with a

thin layer of FSR ink. A contrast-enhanced image of FSR material

at 20x magnification is provided. 72

3.7 As pressure is applied to the sensor, the FSR on the top and bottom

layer intermeshes, increasing conductivity. 73

3.8 One time-slice during a sensor scan. The vertical red line indicates

a powered column electrode, the horizontal blue line indicates a me-

tered electrode, and black lines indicate grounded electrodes. The

pink area illustrates bilinear sensitivity in the metered region which

is centered around the powered column and metered row electrodes

and bounded on all sides by grounded electrodes. 74

3.9 False positives are avoided by grounding all non-active electrodes.

Green dots indicate real touches. The thick red line indicates a

current path that would result in the detection of a phantom touch

(red dot) if the non-active electrodes weren’t grounded. 75

xviii

LIST OF FIGURES

3.10 Touch sensitivity at corner (top) and center (bottom) of a 6mm cell.

For a touch at the corner of the cell, current travels a short distance

through the low-resistance metal trace, shown in blue, before trav-

eling through the junction between the top and bottom FSR layers.

For a touch at the center of the cell, current must travel trans-

versely through a layer of high-resistance FSR ink (shown in red)

before crossing the junction. 77

3.11 Potential field for a 100g point touch on a sensor with and without

drone wires (computed with field solver). Thick red, blue and black

lines represent powered, metered and grounded electrodes respec-

tively. Red and blue vectors correspond to gradients on the top and

bottom surfaces respectively. a) Without drones, potential field is

curved, leading to non-linear response. b) With drones, linearity of

potential field is greatly improved. 78

3.12 Drone wires are inserted between active row and column electrodes. 79

3.13 Schematic of effective circuit at one grid cell for a single point touch. 80

3.14 Calculated response of a single row/column intersection of the Un-

MousePad sensor resulting from a point touch of 100 grams at dif-

ferent (x, y) locations. Voltage decays in a near-linear fashion along

X and Y axes. 83

xix

LIST OF FIGURES

3.15 Scan resolution can be dynamically varied. Left: all active lines

are scanned; Middle: every third active line is scanned, other lines

effectively become drone conductors (gray); Right: sensor is scanned

at the lowest possible resolution, effectively turning it into a single-

touch sensor. 85

3.16 Sensitivity testing. Upper Left: setup showing sensor on scale, plunger,

and ohm-meter connected to sensor; Upper Right: closeup of test

areas cut from sensors; Lower Left: finger-shaped silicone rubber

plunger; Lower Right: plunger fitted with pen-tip 87

3.17 Force vs resistance (top) and force vs conductance (bottom) at var-

ious force ranges (0 to 100 grams on the left, and 0 to 2000 grams

on the right) for a point touch and an area touch. 88

3.18 Sensitivity drift over time with intermittent activations at one-second

intervals (top), and with persistent activation over a period of 16

minutes with a logarithmic time scale (bottom). 89

3.19 Resolution test setup. UnMousePad captures a curve as it’s drawn

on a sheet of paper attached to the top of the UnMousePad. 90

3.20 Resolution test result. Curve captured by the sensor is overlaid onto

the thinned reference curve scanned from the paper. 91

3.21 Illustration of data flow from sensor to application. 93

3.22 Setup for camera based hand visualization. The camera is mounted

on a tripod above the IFSR sensor. 96

3.23 User’s view of their own hand overlaid on application. 97

xx

LIST OF FIGURES

3.24 IFSR Sensor wrapped around a mug. 99

3.25 A compact and power efficient IFSR sensor for use on the back of

small electronic devices. This sensor can also be used to replace

computer track-pads. 100

3.26 A concept of a device with touch-on-back interaction. Note how the

position and force applied by the fingers is visualized on the display

at the front of the device. 100

3.27 An IFSR sensor is used to measure the pressure distribution of a foot.101

3.28 An IFSR sensor can be used to measure the pressure distribution

of a solid object. In this case, the pressure distribution of a mug is

visualized. 101

3.29 IFSR can track a stylus through several layers of paper. 102

3.30 A 24” diagonal transparent IFSR prototype demonstrated at SIG-

GRAPH Emerging Technologies in 2009. 104

3.31 Drumming on a 13” diameter IFSR sensor. The MIDI sound syn-

thesizer and speakers can be seen in the background. 105

3.32 The drum sensor employs curved column and row electrodes. 106

3.33 Here, two users can be seen using an UnMousePad to cooperatively

play our Touchtris game, which is a 2D multi-touch analogue of Tetris.107

3.34 An application used to model 3D planets using an UnMousePad

which we call WorldSculpt. 108

3.35 Users can interact with a water simulation in real-time using an

UnMousePad. 109

xxi

LIST OF FIGURES

3.36 A heavy finger wiggles but a light finger slides. 110

3.37 Manipulation of objects in 3D is intuitive with an UnMousePad.

Multi-finger motion is used to move the tea-cup objects in the plane

of the screen; pinching and spreading fingers move the objects in and

out of the screen, and applying pressure switches into a rotation mode.111

3.38 Simultaneous isometric control of 8 MIDI faders. 112

xxii

Introduction

0.1 Motivation

At the time that I worked on the projects described in this thesis, most computer

interaction was done via a keyboard, mouse or digital stylus. I envisioned that we

would one day create technologies that would allow us to interact with computers

by naturally using our hands and bodies in free space or on virtual surfaces, without

having to hold or touch mechanical implements, and that the virtual worlds that

we would interact with would be comprised of virtual particles which, while not

quite as small as atoms, would be able to capture and simulate the behavior of

physical matter in a realistic way.

Today, much of this vision has come true. The Microsoft Kinect [26] has rev-

olutionized the way in which people interact with video games, using whole body

motions to control virtual avatars, and the LeapMotion [27] allows 3D tracking of

fingers, enabling natural interaction with 3D objects in free-space. Touch surfaces

have become ubiquitous. Most people carry one in their pocket in the form a

smartphone or in their backpacks/purses in the form of a tablet. Particle-based

fluids, although not yet very common have been used in games such as Portal 2

[9], to create challenging fluid-based puzzles in a virtual world.

One common theme found in my work is the focus on algorithms and technolo-

gies that allow for real-time, highly accurate and highly responsive interaction.

1

INTRODUCTION

Also, I have focused on avenues of research that could have broad commercial ap-

plicability in the hopes of having a real impact on the average user of computing

systems. Although only a fraction of the work that I have done as part of my thesis

has become commercially successful, I hope that my work has served to inspire oth-

ers to further explore these interesting directions in graphics and human-computer

interaction research.

0.2 Thesis Organization

This thesis is organized along three topics, roughly related to three avenues of

research that I pursued during my time at New York University. The first topic

(Chapter 1) is concerned with the creation of a real-time GPU-based algorithm

to generate high-quality dense disparity maps from stereo images, which I call

SGMGPU. Applications such as robot navigation, real-time manipulation of 3D

objects, gaming and simulated camera effects such as depth-of-field are discussed.

The second topic (Chapter 2) is concerned with the creation of a real-time

algorithm for rendering deformable objects that are comprised of particles, which

I call RTPIE. Although this algorithm was initially developed to render fluids in

unbounded virtual worlds, it has also been used to create virtual blobby creatures,

a three-dimensional clay-sculpting tool, and an interactive touch-based lava lamp.

The third topic (Chapter 3) is concerned with the design and development of a

technology called IFSR which enables novel pressure-sensitive multi-touch surfaces.

The development, manufacture and evaluation of an IFSR based input pad, called

the UnMousePad is discussed, as well as possible uses for the technology.

2

1
SGMGPU - Semi-Global

Matching on a GPU

1.1 Introduction

This chapter describes my work in the field of computer vision. This work was

originally motivated by the desire to give computers the ability to see depth the

way humans do. Furthermore, I wanted to create an approach that would work

in real-time, allowing the algorithm to be used for applications such as robot

navigation, helping blind people to navigate unfamiliar environments and tracking

the human body in order to enable natural human-computer interaction. My goal

was to develop an algorithm with the following characteristics:

1. Real-Time - The algorithm should be parallelizable so that it can run effi-

ciently on a SIMD processor or a programmable graphics card (GPU), and

should have a consistent run-time regardless of the input.

2. Robust - The algorithm should behave consistently in different environments

and lighting conditions, and should be able to detect areas where it is unable

to compute depth with confidence.

3. Per-Pixel - The algorithm should be able to compute depth for every pixel

in an image.

3

1 SGMGPU - Semi-Global Matching on a GPU

At the outset of the project, I developed an algorithm based on dynamic pro-

gramming. I chose to use dynamic programming because the problem of finding

optimal matches between two images along an epipolar line is very similar to find-

ing a lowest energy path through a two-dimensional array. My first attempt at a

solution treated each horizontal line of pixels separately, which created banding

across the resultant depth image and performed poorly compared to more common

windowed approaches because it couldn’t make use of information from neighbor-

ing epipolar lines.

To reduce banding, I decided to add the ability to pass information between

epipolar lines. However, although I was able to develop several heuristics similar

to those described by Birchfield and Tomasi [3], I could not find a way to do this

optimization in a way that would arrive at the global solution. I soon discovered

that what I was attempting to do – dynamic programming in three dimensions –

was known to be an NP-complete problem.

In searching for a solution, I discovered a dense stereo algorithm called Semi-

Global Matching (SGM) [20] which avoided this problem and was ideally suited

to implementation on a SIMD processor such as a GPU. Because it was based on

dynamic programming, it’s run-time was consistent no matter what the input was.

Furthermore, the SGM algorithm performed better than most other algorithms

on the ”Middlebury Stereo Evaluation Version 2” [39] when run on natural scenes

such as the Cones and Teddy data-sets.

Starting with a CPU implementation that I then optimized with SSE3 SIMD

instructions, which could not achieve real-time performance, we set about porting

4

1 SGMGPU - Semi-Global Matching on a GPU

the algorithm to run in real-time on a GPU, freeing the CPU for other tasks. Our

resulting algorithm was able to take a live stereoscopic video feed and generate

dense disparity maps in real-time. We also developed several shaders which allowed

us to manipulate the generated video stream in real time using the extracted depth

information to perform operations such as simulating depth of field, and performing

edge extraction and object separation using depth information. This work was

presented at SIGGRAPH 2006 [37].

1.2 Algorithm

Most GPU stereo algorithms aggregate errors across blocks, an approach which

is known to wash out fine detail. In contrast, the SGM algorithm uses dynamic

programming to capture detail. To avoid horizontal streaking, SGM performs dy-

namic programming along N directions (typically 16) in the xy plane of a (W*H*D)

disparity volume. At each xy position, it sums up the costs along the z axis to find

the minimum cost path that ends at pixel p and disparity d.

The most straight-forward implementation of the algorithm processes one di-

rection at a time, starting with each xy position on the edge of the volume, thus

performing approximately (N/2-1)*(W+H) passes. The computed costs are stored

in a (W*H*D) error volume and the final disparity at each pixel is taken to be the

disparity with least cost. Post processing steps are used to detect occluded regions

as well as regions where disparity was computed incorrectly with a consistency

check, to compute sub-pixel disparity, and to detect and fill occluded areas.

5

1 SGMGPU - Semi-Global Matching on a GPU

Figure 1.1: Simplified GPU data flow diagram. Differences between the left and
right images are fed through the vertical and horizontal sweep shaders which add
errors to a 320x240x64 error volume. Disparity is extracted for the left eye and right
eye images and compared to generate a consistency map. Inconsistent pixels are
filled in with depth from neighboring pixels and then a shader is used to generate
a heat map based on the depth of the pixels in both left and right images.

1.3 GPU Implementation

The original SGM algorithm was not suitable for GPU architectures because it

operated on a single column of the disparity volume at a time. Instead, we desire

to make the minimum number of passes through the disparity volume, while in

parallel, operating on the largest number of paths.

6

1 SGMGPU - Semi-Global Matching on a GPU

We accomplish this by storing dynamic programming costs in an RGBA sweep

texture, which is as wide as the max disparity and as tall as the image height or

width (depending on sweep direction). Each component of the texture contains

temporary data for one direction, thus we perform dynamic programming for four

directions in one sweep. We perform one horizontal and one vertical sweep per

video frame, yielding 8 directions, giving sufficient quality for real-time purposes.

The accumulated costs are then packed and additively blended into the error

volume which is stored as a 2D texture of 4x4 RGBA blocks where each component

represents a cumulative error at a given depth, for a total of 64 depths. Next,

an extraction step extracts disparity information from the error volume into two

textures containing per-pixel disparity and match costs for the left and right depth

maps. Finally, a consistency shader compares these to find occluded areas and a

hole-filling shading fills them. (see Figure 1.1)

1.4 Results

Our demo runs on a modest desktop PC. The CPU is tasked with acquiring and

rectifying stereo image pairs from a Point Grey Research Bumblebee stereo camera,

and feeds them to a set of shaders running on an nVidia 7900GTX video card

(Figure 1.2). The GPU interface was implemented using software we derived from

the OpenVIDIA project [16]. The software invokes shaders which compute depth

maps and render them to the display along with post-processing effects.

At a resolution of 320x240 and max disparity of 64, our implementation runs at

8fps. At 160x120x32, it runs at 13fps. This includes the time necessary to acquire

7

1 SGMGPU - Semi-Global Matching on a GPU

Figure 1.2: We used an nVidia 7900GTX video card to run the SGM algorithm
and a Point Grey Research Bumblebee camera to acquire stereo images.

Figure 1.3: Screenshot of SGMGPU interactive program running with a 320 x 240
image resolution. The computed disparity map, shaded with a heat-map is in the
upper left, and a real-time depth-of-field shader applied to the input video is shown
on the upper right. The left and right input images are shown below.

8

1 SGMGPU - Semi-Global Matching on a GPU

Figure 1.4: One of the autonomous LAGR robots. The SGM algorithm was used to
generate ground-truth disparity data to train LAGR’s neural networks for obstacle
avoidance.

and rectify images, which we did not accelerate as part of the project. Without

image acquisition and rectification, the demo runs at 10fps and 24fps respectively.

Even at these frame rates, there is significant room for improvement in data

acquisition and shader implementation, and we believe that a 2x speedup is easily

possible. Furthermore, tremendous improvements would be possible if the video

card supported rendering to 3D texture slices, and taking minimums across a

texture row efficiently. Although our implementation performed sweeps in only

8 directions, the quality of the depth maps was almost indistinguishable when

compared to the original 16 direction algorithm.

In addition to the realtime interaction applications we described in our 2006

SIGGRAPH presentation, our algorithm was also used to generate ground truth

9

1 SGMGPU - Semi-Global Matching on a GPU

Figure 1.5: After training a set of neural network classifiers with depth information
extracted using our algorithm, the LAGR robots were able to classify the space
around them as navigable (blue) and obstacle (red).

depth information as part of the LAGR (Learning Applied to Ground Robotics)

project [17]. The data was used to train a neural network classifier which was used

for obstacle avoidance on the LAGR robots (Figures 1.4 and 1.5). Our implemen-

tation yielded significantly better disparity maps than the SAD (Sum of Absolute

Differences) stereo algorithm used by the Triclops SDK [33] that came standard

with the Point Grey Bumblebee cameras used on the LAGR robots.

Some comparison images of our algorithm operating on the LAGR dataset

are presented in Figure 1.6 and Figure 1.7. These images are taken in highly

unstructured outdoor environments which are a very difficult test case for most

stereo algorithms. The images in the figures were generated using the same GPU

algorithm described above, running at 320x240x64 resolution.

10

1 SGMGPU - Semi-Global Matching on a GPU

Figure 1.6: Comparison of SGMGPU with the Triclops SDK’s algorithm on LAGR
test data. The upper images are the left and right stereo input images. The
bottom left shows the output of the Triclops SAD algorithm. The bottom right
shows the output of our SGM algorithm. Note that our algorithm is much better
at resolving the leafy branch in the right side of the images as well as the trees in
the distance. Furthermore, we are able to extract depth for the entire image frame,
and accurately report occluded areas in blue. In contrast, the SAD algorithm has
an area all around the image for which depth is not computed and has several
black and white splotches where depth was not computed correctly.

11

1 SGMGPU - Semi-Global Matching on a GPU

Figure 1.7: Second comparison of SGMGPU with the Triclops SDK’s algorithm
on LAGR test data. The upper images are the left and right stereo input images.
The bottom left shows the output of the Triclops SAD algorithm. The bottom
right shows the output of our SGM algorithm. Note that our algorithm is much
better at resolving the shape of the tree stump, and produces a continuous depth
gradient along the path, while the SAD algorithm exaggerates the size of the tree
stump and outputs depth in splotchy discontinuous steps.

12

1 SGMGPU - Semi-Global Matching on a GPU

Figure 1.8: Extraction of a disparity map from a stereogram. No special mod-
ifications to the software were necessary for it to see a depth image within the
stereogram. To create the input, we simply cropped two images from the original
stereogram. For the left eye image, we removed one vertical band of the pattern
from the right side of the source image, and for the right eye image, we removed a
band of the same size from the left side of the source image.

Another application I explored was extracting depth out of stereograms, which

are images with encoded stereo depth that can only be seen by crossing or un-

crossing your eyes. Surprisingly, our algorithm was able to extract the hidden

depth information without any modifications. All we needed to do was to crop the

original image into a left eye and right eye version, and feed those two images into

our algorithm. The result was a greyscale depth image showing the hidden picture

(Figure 1.8).

13

1 SGMGPU - Semi-Global Matching on a GPU

1.5 Follow-up Work

In early 2008, we ported our algorithm to use CUDA which allowed us to greatly

simplify the algorithm implementation and increase the number of directions used

in the SGM algorithm to 16.

We did this by running through the directions one at a time, and using a sep-

arate CUDA thread to process each slice in a given direction (Figure 1.9). To

maximize parallelism, all the threads for each direction were started simultane-

ously. For threads along the diagonal directions, to maintain memory locality and

insure a consistent amount of work per thread, we had the threads reset their state

and wrap around whenever they stepped past the edge of the error volume.

Although this new approach reduced the amount of parallelism by a factor of

four compared to the shader-based algorithm, it made the memory access patterns

much more consistent, which led to significantly faster performance. This increased

the quality of our results, allowing us to match the quality of the CPU based version

of SGM as described in the original SGM paper [20].

The resulting CUDA-based algorithm nearly doubled the frame rate of our

shader-based algorithm to 14.8fps with 320x240x64 resolution and 16 directions,

running on the same nVidia 7900GTX used in previous experiments. Although the

results of this work were never published, we believe that this later implementa-

tion outperformed other GPU-based implementations of the SGM algorithm that

existed at the time [14].

14

1 SGMGPU - Semi-Global Matching on a GPU

Figure 1.9: The 16 passes used in the CUDA implementation of the SGM algo-
rithm. For the 4 out of 16 passes shown in detail, each set of connected dots
and arrows represents the work done by a single thread. For the diagonal passes,
threads loop around whenever they reach the top or bottom of the error volume.

15

2
RTPIE - Real-Time Particle

Isosurface Extraction

2.1 Introduction

Particle-based methods are commonly used for simulation of fluid, gelatinous, and

gooey substances. These methods are often used in interactive applications such as

surgical simulation, surface modeling, and video games. While modern computers

are easily capable of simulating thousands of particles in real time, in many cases,

a surface must be generated over the particles in order to realistically render the

output of such a simulation. This surface extraction step is often the bottleneck

in such applications due to the high computational cost and/or large memory

requirements of common surface extraction algorithms.

We present a new approach for fast, high quality polygonization of isosurfaces

that can be used to render surfaces in real-time over thousands of particles in an

unbounded spatial domain using a small amount of working memory, and com-

pare it to existing algorithms. Furthermore, we extend our approach to generate

polygon faces in back-to-front rendering order for transparent surfaces. Finally, we

demonstrate the effectiveness of this new technique with several interactive sce-

narios showing complex interaction between fluid entities and dynamic objects in

a virtual environment.

16

2 RTPIE - Real-Time Particle Isosurface Extraction

Figure 2.1: Several different lava lamps rendered in realtime with our algorithm.

Figure 2.2: Interactive lava lamp simulation running on an FTIR table.

17

2 RTPIE - Real-Time Particle Isosurface Extraction

Figure 2.3: Blue gel in the Portal 2 game. Courtesy of Valve Corporation.

The development of this algorithm began in 2001 with the creation of a virtual

lava lamp simulation for a graphics class at Princeton University. This was later

released as a screen saver called LavaLamp3D (Figure 2.1). The algorithm was

later used to create an interactive lava lamp for use with multi-touch displays,

including Jeff Han’s Perceptive Pixel display (Figure 2.2).

The lava table demo was seen by Valve Corporation’s Ken Birdwell, who in-

vited me two work with Valve on incorporating the algorithm into Valve’s source

engine. At Valve, I perfected the algorithm for use in real-time applications such as

video games, solving many of the challenges created by going from a fixed volume

simulation to fluids that could exist in a large virtual world and in incorporating

the algorithm with the other components of a complex game engine.

18

2 RTPIE - Real-Time Particle Isosurface Extraction

Figure 2.4: Screenshot of the iLava virtual lava lamp iPhone app.

19

2 RTPIE - Real-Time Particle Isosurface Extraction

Figure 2.5: Virtual clay sculpting software. The underlying particle simulation is
shown on the left. Skin is rendered over the sculpted particles using our method
on the right.

As part of this work, I developed a complete, well documented and flexible

isosurface rendering system called Blobulator and worked with a small team of

talented artists and engineers to experiment with several different gameplay con-

cepts.

With Valve’s support, the technology was demoed at I3D in 2008 [36]. In April

2011, Valve released Portal 2, the first game to use the Blobulator engine. The

engine was used to render “gels” which interacted with a complex virtual world to

change it’s behaviors, and could travel through portals to create incredibly complex

and engaging puzzles (Figure 2.3).

The engine was also used to create iLava, a popular virtual lava lamp applica-

tion for the iPhone and iPad (Figure 2.4) and a virtual clay sculpting application

(Figure 2.5).

20

2 RTPIE - Real-Time Particle Isosurface Extraction

2.2 Related Work

Particles are a common and convenient representation for modeling physical en-

tities, especially those that can undergo drastic changes in shape and topology.

By adding inter-particle forces, a particle system can be made to act like a fluid,

solid, and anything in between, or it can be procedurally animated to achieve a

specific shape or motion. Furthermore, in interactive applications, particles can

easily handle interaction with users and world geometry.

In order to create compelling simulations of particle-based phenomena, a large

number of particles is usually necessary. To give the user the illusion that the

simulated phenomena are composed of an inordinate number of particles, as they

are in nature, it is often desirable to coat the particles with a smooth surface so

that the individual particles are not visible. A common technique for generating

such a surface is to define an implicit function over the particles in space, and to

render the surface wherever that function is equal to a predetermined threshold

value. Such a surface is commonly referred to as an implicit surface or isosurface.

Blinn [4] first proposed the use of implicit surfaces as a model for ray-tracing

electron density maps over molecular structures and suggested the use of implicit

surfaces as a general model for three-dimensional shapes. Reeves [34] proposed the

use of particle systems as a technique for modeling and animating fuzzy objects and

rendering particles simply by additively blending (splatting) them into a buffer.

Sims [40] expanded upon Reeves’ work by using particles for modeling other natural

phenomena such as waterfalls, fire, and tornadoes.

21

2 RTPIE - Real-Time Particle Isosurface Extraction

Figure 2.6: A fountain rendered in real-time using our technique in a fully inter-
active video game environment.

22

2 RTPIE - Real-Time Particle Isosurface Extraction

In more recent work, taking advantage of recent hardware, Adams et al. [1] pro-

posed a technique where on the order of 100,000 particles are rendered as transpar-

ent sprites on the GPU. Because the number of particles is so large, the individual

particles become less visible, creating the illusion of a smooth surface. However,

the approach suffers from the same problem as earlier work since the illusion is

broken at the edges of the surface where individual particles are still visible.

Szeliski and Tonnesen [43] and Witkin and Heckbert [50] proposed an alternate

approach which uses a second class of oriented particles, known as surfels, to track

implicit surfaces. More recently, Müller et al. [29] used a large number of surfels

to track texture and surface detail over slowly deforming models. The drawback

of these techniques is that for a small number of physically simulated particles

(phyxels), several orders of magnitude more surfels must be simulated to cover the

surface. These surfels must physically interact with both the phyxels and each

other. Furthermore, the physical simulation requires frame coherence, otherwise

surfels lose track of the surface. Finally, neither the ray-tracing, particle splatting

nor surfel tracking approaches produce polygons as output. Thus, they can not

fully take advantage of the pipeline used in the majority of interactive graphics

applications where geometry is generated on the CPU, and the GPU is used for

polygon based texturing, shading and rasterization.

For these reasons, a technique that can efficiently polygonize the isosurface,

or in other words, generate a triangle mesh is preferable. Although there are

techniques such as marching tetrahedra proposed by Bloomenthal [5] and marching

triangles proposed by Hilton and Illingworth [19] which can polygonize surfaces,

23

2 RTPIE - Real-Time Particle Isosurface Extraction

marching cubes proposed by Lorensen and Cline [24] is by far the most commonly

used approach because is straightforward to implement, does not require coherence

between frames, and is arguably the fastest way to extract surfaces from a 3D

volume of scalar data.

In the marching cubes approach, a volume of space is divided into individual

cubes. Isosurface field values and normals are calculated at the corners of the

cubes, and an eight bit lookup is computed based on whether the field values are

larger or smaller than the isosurface threshold. The lookup is used to index a

static data structure which indicates how vertices on the edges of the cube are

to be connected to form a set of triangles. Finally, the vertices are computed by

linearly interpolating the positions and normals at the corners based on the field

values.

The main drawback of marching cubes is that it requires a regular 3D volume

of scalar field values as input. This is usually not a problem in applications such

as medical imaging, where the data is naturally captured as a 3D volume. How-

ever, in interactive applications where the input is a set of procedurally generated

particles, there is no volume of scalar data a-priori, and it is preferable to sample

the field values defined by the particles judiciously by traversing, calculating iso-

surface values for, and polygonizing only the the cubes that contain segments of

the isosurface.

To address this problem, Wyvill et al. [52] proposed a surface-following (contin-

uation) approach which, starting at a point which contains a surface, continued by

traversing neighboring cells which contain portions of the surface in a depth-first

24

2 RTPIE - Real-Time Particle Isosurface Extraction

or breadth-first manner. Additionally, the paper noted that it is preferable to force

particle fields to have a limited radius of influence, and suggested using a voxel

grid to look up particles that have influence at particular locations in the volume.

It mentioned that this lookup structure becomes more accurate as the voxel size

shrinks to the size of the marching cube grid, but that the memory footprint of

the structure and the cost of lookup/insertion increases as the grid size becomes

smaller. It also noted that because cube corners can be shared by as many as eight

cubes, storing these values in a 3D cache grid and re-using these values is much

more efficient than re-calculating them from scratch each time they are needed.

However, it did not suggest any way to find and eliminate unneeded cached values

during the course of rendering a single frame. Finally, it proposed using a hash

function that wraps each coordinate to keep it within the the dimensions of the

3D cache to allow rendering in an arbitrarily large unbounded volume.

Triquet et al. [47] detailed several important considerations for extending these

techniques for fast isosurface polygonization of particles. These included an im-

proved isosurface field function, finding start points (seeds) from which to traverse

the surface by evaluating field values along a fixed direction starting at the center

of each particle, and reusing vertex calculations at edges that are shared between

cubes in addition to reusing corner calculations. This paper also gave a cursory

description of the problem of looking up particles that contribute to a given iso-

surface field value, and came to the same conclusion as [52], that the voxel size for

the lookup data structure must be coarser than the marching cubes grid, yet failed

to provide an analysis of the optimal grid size. Furthermore, the paper noted that

25

2 RTPIE - Real-Time Particle Isosurface Extraction

using a hash map for making isosurface extraction unbounded slows the algorithm,

yet failed to provide an alternative.

Teschner et al. [45] proposed an alternate hash function along with analysis

of its performance, and additionally provided an analysis of the cost of insert-

ing/looking up elements in a volumetric grid and how it varies with grid size.

Although they used tetrahedra as a primitive rather than spheres, their findings

showed that the optimal performance of a grid based lookup occurs when the grid

is approximately the same size as a tetrahedron’s edge length.

In our experiments with the same sort of lookup, we found a similar relation-

ship for particles, where the optimal performance occurred when the size of grid

cells was approximately equal the radii of the field of influence of the particles. Un-

fortunately, at this grid size, this type of lookup cache is very imprecise, yielding

approximately 6.5 times more particles than the number that actually contribute

to the field value at a given point (See Section 2.7 for more details).

In this chapter, we present a novel real-time particle isosurface extraction tech-

nique that overcomes the deficiencies of previous approaches. Our technique con-

sists of the following major contributions:

1. A spatial decomposition algorithm which divides the volume to be rendered

into blocks while avoiding seams or inconsistencies in the surface between

adjacent blocks. This naturally limits the upper bound of memory usage,

eliminates the need for hashing, allows rendering of particles in an unbounded

volume, and enables multi-threaded rendering on multi-core computers.

2. An algorithm for extracting the isosurface within a block which we refer to as

26

2 RTPIE - Real-Time Particle Isosurface Extraction

Marching Slices that avoids excessive growth of cached data by polygonizing

the isosurface in a slice by slice fashion. Our algorithm guarantees a single

visit to each cube intersecting the isosurface without keeping global informa-

tion on all visited cubes by discarding slices of cached data that will not be

reused in the future. Moreover, because our algorithm renders in slices, it im-

proves the locality of memory accesses, and can be easily extended to output

triangles in a back-to-front order when rendering transparent surfaces.

3. A fast and exact particle lookup technique which speeds up isosurface field

value calculations by finding all the particles within a fixed influence radius

that contribute to a sample point without finding any particles outside of

that radius. In contrast, alternative lookup techniques return many particles

that are outside of the influence radius, thereby wasting time in field value

calculations.

Although blocking in order to subdivide large problems into smaller ones, pro-

cessing of volumes one slice at a time, and lookup of particle influences by project-

ing them onto a 2D surface has been explored before in other contexts, we believe

we are the first to combine these techniques into a unified approach which solves

many, if not all of the practical real-world problems that one may encounter when

using isosurface-extraction of particle data sets in interactive applications.

The rest of this chapter details how these three components work in concert to

enable memory efficient, spatially unbounded real-time rendering. Furthermore, we

present a detailed comparison between this new technique and other particle-based

isosurface extraction approaches over multiple scenarios, and further demonstrate

27

2 RTPIE - Real-Time Particle Isosurface Extraction

its performance in a complex interactive game environment. Due to space limita-

tions, we do not address issues relating to particle simulation or animation other

than mentioning that we use a separate set of data structures (which operate at a

much coarser level than the data structures used for rendering) for inter-particle

collision detection, and a commercially available physics engine for collisions be-

tween particles and the world.

2.3 Algorithm Overview

The input to our algorithm is a list of particles containing (x, y, z) coordinates for

position and the output is a list of triangles represented by a vertex and index

buffer. The algorithm requires that the implicit field produced by each particle

is radially monotonic, continuous and has a limited radius of influence which we

call the cutoff radius Rc. We employ the following function because it can be

computed efficiently with a few simple operations (this function is similar to the

one used by Triquet [47], but we prefer this form because it requires less operations

to compute):

f(r) =

 (1− (r/Rc)
2)2 if r < Rc

0 otherwise


.

In addition to Rc and a list of particles, our algorithm takes the size of a cube

S, the threshold value where surfaces are generated T , and possibly other user-

defined data. Without user-defined data, a field calculation routine calculates field

28

2 RTPIE - Real-Time Particle Isosurface Extraction

values and normals which are then interpolated by a vertex calculation routine

to output vertex positions and normals. The user-defined data can be used along

with custom user-defined isosurface field and vertex calculation routines to generate

vertices with additional data such as colors, or texture coordinates.

Once all the input data is specified, the algorithm proceeds by subdividing the

render volume into a list of blocks. Proceeding one block at a time, it builds a

particle lookup cache for accelerating field value calculations, and then finds the

seed cubes at which polygonization will begin. It then proceeds to use the marching

slices algorithm to polygonize the cubes inside each block slice by slice, using field

and vertex calculation routines to generate vertices and writing the output into a

user-specified vertex and index buffer.

We would like to point out that at all stages of the algorithm, we take great

care to avoid duplicate computation by using caches to recycle computation re-

sults. We also focus on keeping memory usage low and reasonably bounded as this

is very important for real time applications. Because of the memory efficiency of

our algorithm, a majority of our data structures can fit into L2 or L3 cache on

most modern computers, which is often several orders of magnitude faster than

main memory. Finally, in a real-time system, such as a video game, our rendering

algorithm needs to coexist with other game components on a wide range of plat-

forms, including consoles, which often have limited memory. For this reason, our

algorithm is ideally suited to real-time particle rendering in real-time systems.

29

2 RTPIE - Real-Time Particle Isosurface Extraction

2.4 Block Subdivision

Figure 2.7: This simulated fountain is too big to render in a single marching cubes
volume, so it is seamlessly split into multiple blocks, which are shown here in
different colors.

We divide the volume containing particles into disjoint blocks, which can be

processed independently, calculating the surface sequentially using only the mem-

ory footprint for a single block, while producing a seamless final result (Figure 2.7).

Starting from the global set of particles, we build a list of blocks, each of which

keeps its own list of particles. Each block is only responsible for rendering the

cubes inside it, but to maintain consistency with adjacent blocks, it must consider

all particles beyond its boundary that may have a field contribution in the interior

30

2 RTPIE - Real-Time Particle Isosurface Extraction

rendered
 surface

Rc

seed cube

particle

non-rendered
 Surface

particles in margin
that have an effect
in rendered area

field forced
to 0

seeding path abandoned
seeding path

multiple blocks meet to
form continuous surface

S

margin

Several Adjacent Blocks

Detail of Single Block

Figure 2.8: 2D illustration of block subdivision. The green box contains the poly-
gonized surface and red box outlines the margin.

31

2 RTPIE - Real-Time Particle Isosurface Extraction

of the block. Thus, we additionally insert all particles within a distance of Rc from

the block into the list (Figure 2.8).

We expand the original dimensions of the block by a margin of cubes to enclose

a distance of Rc, the radius of influence of a particle. Marching slices will operate

over the expanded volume, but will not output mesh triangles for cubes in the

margin. This guarantees extraction of the isosurface of all particles including those

located in the margin. Because the marching slices algorithm (Section 2.5) relies

on the assumption that the isosurface is closed in order to guarantee a traversal of

the entire surface, we force field values to disappear at sample points on the outer

margin boundary by instrumenting our lookup cache in such a way that it does

not return particles for samples on the boundary (Section 2.7).

The overhead of our block subdivision approach is the cost of traversing the

cubes that are in the margin. For a typical 100 × 100 × 100 cube block, with a

margin that is 5 cubes wide, 25% of the cubes in the full 110× 110× 110 volume

are margin cubes. Since no vertices are generated for margin cubes, and full field

calculations are not necessary (only the sign of the field is needed), the cost of

traversing a cube in the margin is approximately half that of a normal cube. Thus,

in the case that particles are randomly distributed within the volume, the extra

overhead of blocking is approximately 12% of total work. This overhead is small

compared to the cost of hashing, the alternate approach for rendering unbounded

volumes, as hashing must be done both for corner retrieval and for particle lookups

(Section 2.7). Furthermore, block subdivision decreases memory usage by limiting

the number of corner values and particles kept in cache.

32

2 RTPIE - Real-Time Particle Isosurface Extraction

slab

z

x
y

corner cache (one per slice)

todo lists (one per slab)

slice vertex buffer index buffer
 pos norm [color] [u,v] field cube

x,y value done norm [color] [u,v] Ix Iy Iz

tri

Figure 2.9: Data structures used in the Marching Slices algorithm.

Block subdivision is also beneficial for applications such as surface modeling,

where only a small subset of particles move between frames. Here, the blocks

with no moving particles can be redrawn without polygonization simply by re-

rendering old vertex and index buffers. By skipping the rendering of blocks that

are not visible from the camera, block subdivision can be used for visibility culling,

and can also be used for controlling level of detail by varying S between blocks,

although care needs to be taken to avoid visible seams. Finally because each block

is rendered independently of other blocks, it is straightforward to parallelize the

algorithm by rendering each block in a separate thread on a multi-core processor.

2.5 Marching Slices

The intuition for the marching slices algorithm is that memory usage would be

greatly reduced if it were possible to polygonize isosurfaces one slice at a time,

caching only the data necessary for the current slice. However, this poses two

serious challenges. The first is that the field values are not known a-priori since

we only calculate field values on demand. Thus, it is not possible to simply march

33

2 RTPIE - Real-Time Particle Isosurface Extraction

back-to-front through the volume. Instead, it is necessary to march along con-

nected cubes containing the isosurface starting at a seed cube in a fashion where

all the connected cubes in the current slice are traversed before moving on to the

next slice, with the ability to march through the volume arbitrarily in both forward

and reverse order depending on how the cubes are connected. The second chal-

lenge is that in order to realize a reduction in memory usage, we need to discard

cached data that will not be reused and ensure that there are no redundant visits

to completed cubes.

2.5.1 Data Structures

To keep memory usage to a minimum, we use a sparse set of data structures over

the volume (Figure 2.9). We treat each block as a vertical array of Nz slabs of size

Nx×Ny×1 cubes. We refer to the vertices of a cube as corners, reserving the term

vertex for a vertex that is output by the algorithm for rendering. The slabs are

numbered from 0 to Nz where z increases upwards. Each slab is bounded above

and below by a two-dimensional slice, with adjacent slabs sharing slices. The slices

are numbered from 0 to Nz + 1. For each of the Nz slabs, we store a linked list,

called the todo list containing integer (x, y) tuples which represent cubes in the

slab that may need to be rendered.

For any slab which is being polygonized, we allocate two slice caches for the slice

above and the slice below the slab to store data that may be reused by an adjacent

slab. A slice cache consists of a 2D corner index array of size Nx+1×Ny +1, and a

dynamically resizing vector of corner values called a corner cache. Each element of

34

2 RTPIE - Real-Time Particle Isosurface Extraction

the corner index array consists of an index which can be used to retrieve a computed

corner from the corner cache (or 0 if the corner has not been computed), and two

boolean “done” flags to indicate whether the cubes above and below the slice at

that location have been rendered.

For corners that have already been visited, the corner cache array stores an

(x, y) tuple corresponding to the location of the corner (which is later used for

clearing the corner index array), the calculated floating point field value and nor-

mal, an optional user-defined structure for data such as colors and texture co-

ordinates and three vertex indices (Ix, Iy, Iz). Each non-zero vertex index refers

to an entry in a vertex buffer for the three possible vertices located between the

corner at location (x, y, z) and the three other neighboring corners at (x+ 1, y, z),

(x, y + 1, z) and (x, y, z + 1). Each entry in the vertex buffer stores an (x, y, z)

position, normal and optional information such as color, and texture coordinates.

Finally, we keep an index buffer which references vertices in the vertex buffer and

defines the set of triangles to be drawn in the generated mesh.

2.5.2 Seeding

Because the marching slices algorithm only traverses cubes that contain the iso-

surface, one or more starting points which we refer to as seed cubes, or simply

seeds, must be found for each disconnected surface. To ensure that the isosurface

surrounding each particle is found, seed cubes are generated for all particles in

a block. This is done by snapping to the corner closest to the particle position,

evaluating the field value, and then stepping down in the negative z direction one

35

2 RTPIE - Real-Time Particle Isosurface Extraction

corner at a time until a corner with a field value below the threshold is found. An

entry is then pushed into the todo list of the slab that contains the transition in

field values with the (x, y) position of the cube that the seed particle was in.

The steps are taken in the negative z direction because we prefer to render slices

from bottom to top and would like to find seed points as close to the bottom as

possible. If seeding traverses farther than Rc down from a particle center without

finding an isosurface, the search is terminated, as such a particle must have another

particle below it which will find the surrounding surface. If the seeding algorithm

steps all the way down to slice 0, a seed cube will be found because field values

at the boundary of a block are forced to 0 so that all surfaces are closed, as

discussed in Section 2.4. It is important to note that the grid resolution must be

high enough such that the corner closest to each particle is within that particle’s

radius. Otherwise, this procedure may fail to find the isosurface around a particle.

2.5.3 Execution

Once seeding completes, the marching slices algorithm begins to polygonize the

isosurface (Algorithm 1). The algorithm repeatedly polygonizes the bottom-most

slab containing an entry in its todo list, until all todo lists are empty.

Before entering a slab, the algorithm ensures that the slice caches and corner

caches have been allocated for the slices above and below the slab. It then proceeds

to polygonize the slab using a variant of surface-following marching cubes that

visits only the connected cubes in the current slab.

To polygonize a slab, the algorithm repeatedly pops a cube from the slab’s

36

2 RTPIE - Real-Time Particle Isosurface Extraction

Algorithm 1 The Marching Slices Algorithm
slabs[].todo list← findAllSeedCubes()
while one or more slabs has a non-empty todo list do

z ← getZOfLowestSlabWithTodoItems()
slabcurrent ← slabs[z]
slabbelow ← slabs[z − 1]
slababove ← slabs[z + 1]
slicebelow ← slices[z]
sliceabove ← slices[z + 1]
ensureAllocated(slicebelow)
ensureAllocated(sliceabove)
while !slabcurrent.todo list.empty() do

(x, y)← slabcurrent.todo list.pop()
if slicebelow[x, y].doneabove or sliceabove[x, y].donebelow then

continue
slicebelow[x, y].doneabove ← true
sliceabove[x, y].donebelow ← true
corner0 ← lookupOrEval(slicebelow[x, y])
corner1 ← lookupOrEval(slicebelow[x+ 1, y])
corner2 ← lookupOrEval(slicebelow[x, y + 1])
corner3 ← lookupOrEval(slicebelow[x+ 1, y + 1])
corner4 ← lookupOrEval(sliceabove[x, y])
corner5 ← lookupOrEval(sliceabove[x+ 1, y])
corner6 ← lookupOrEval(sliceabove[x, y + 1])
corner7 ← lookupOrEval(sliceabove[x+ 1, y + 1])
if cube is not in margin then

polygonize(corner0−7)
(doabove, dobelow, doleft, doright, dofront, doback)← cubesToDo(corner0−7)
if doabove and !sliceabove[x, y].doneabove then

slababove.todo list.push(x, y)
if dobelow and !slicebelow[x, y].donebelow then

slabbelow.todo list.push(x, y)
if doleft and !slicebelow[x− 1, y].doneabove then

slabcurrent.todo list.push(x− 1, y)
if doright and !slicebelow[x+ 1, y].doneabove then

slabcurrent.todo list.push(x+ 1, y)
if dofront and !slicebelow[x, y − 1].doneabove then

slabcurrent.todo list.push(x, y − 1)
if doback and !slicebelow[x, y + 1].doneabove then

slabcurrent.todo list.push(x, y + 1)
end while
if slabbelow.todo list.empty() then

deallocate(slicebelow)
if slababove.todo list.empty() then

deallocate(sliceabove)
end while

37

2 RTPIE - Real-Time Particle Isosurface Extraction

todo list and makes sure it hasn’t been polygonized by checking the done fields

in the slice above and below. It then marks the cube as visited and polygonizes

the cube. If polygonization indicates that unvisited neighboring cubes contain the

isosurface, they are added to the todo list of their respective slabs. This procedure

repeats until the todo list of the current slab is emptied.

Once the todo list in a slab is emptied, a check is performed to see if the

cached data for the top or bottom slice can be cleared. The top slice’s cache can

be cleared when the todo list in the slab above is empty, and similarly, the bottom

slice’s cache can be cleared when the todo list in the slab below is empty. All

cleared slices’ corner index arrays are reset by clearing nonzero indices and done

flags using the (x, y) entries in their respective corner caches and are returned to

a common memory pool.

The algorithm completes once there are no more todo list items for any slab in

the block, at which point the index and vertex buffers that have been generated

for the current block can be flushed out for rendering to the GPU.

2.5.4 Algorithm Correctness

To prove that each cube is visited only once, we need only show that the slice caches

(storing the cube-done flags) above and below a slab are only deallocated once the

visited cubes in a slab can’t possibly be re-visited. A slice cache is allocated when

corner values are needed, that is, when a slab above or below is traversed. The

done flags in the slice cache prevent revisitation of processed cubes in the current

slab. They also prevent the addition of cubes that have already been processed to

38

2 RTPIE - Real-Time Particle Isosurface Extraction

the todo list of an adjacent slab. A slice is deallocated only when the slabs above

and below have empty todo lists, at which point, all the connected cubes in both

slabs must have been traversed. When this condition is met, there is no danger in

deallocating a slice because it no longer contains cube-done values and cached data

that can be reused by unvisited cubes. This ensures that each cube can only be

visited once, and that the algorithm will always complete, for any possible input.

2.5.5 Memory Requirements and Performance

We can estimate how many slices need to be kept in memory at the same time

for the purposes of predicting overall memory usage. We know that if the seeding

algorithm were able to find all the local minimum points in the isosurface and seed

there, we could traverse the slabs monotonically from bottom to top using only

two cache slices to render the entire block.

However, there are rare cases where the seeding algorithm does not find all the

local minima (Figure 2.10). As a result, marching slices sometimes needs to step

downwards to render connected cubes that were missed in slabs below. Each time

the step direction reverses, an additional slice is needed to store the abandoned

frontier until the algorithm returns to that slice. Fortunately, we have found that

the typical number of slices needed to render a block is three, and situations where

more than three slices are necessary are rare and short-lived.

Compared to the equivalent surface-following marching cubes algorithm which

would have kept all Nz + 1 slices and associated corner values in memory, our

approach uses much less working memory. It is also faster than surface-following

39

2 RTPIE - Real-Time Particle Isosurface Extraction

a) b)

seed points

missed local minima

Figure 2.10: Cases where seeding fails to find local minima a) at the bottom of
a surface, seeding is sometimes off by a single slab b) inside of an upright bowl
shape there may be no seeds.

due to an increase in the locality of memory accesses. In fact, the amount of

cache memory used by our approach with a 110 × 110 × 110 grid is below 1MB

(See Results). Additionally, while working on a slice, memory accesses become

2D rather than 3D, and various positional calculations can be reused, further

improving performance. Our approach also runs much faster than hash map based

approaches by avoiding the cost of hash map lookups and uses significantly less

memory because the hash-based approaches keeps all corner values in memory,

while ours keeps corner values only for the currently active slices (See Results).

Because of its small memory footprint, marching slices is able to coexist well

with other components of an application such as AI, physics, networking and world

rendering in a graphics engine. This is critical in interactive applications where

virtual memory paging will degrade performance and frustrate users. Finally, this

is important for multi-core hardware which shares cache memory between multiple

processes, and hardware with relatively small amounts of working memory, such

as mobile devices and game consoles.

40

2 RTPIE - Real-Time Particle Isosurface Extraction

2.6 Transparency and Culling

In some situations, it is advantageous to generate isosurfaces in a front-to-back or

back-to-front order. For example, in order to properly render transparent surfaces

on most graphics hardware, it is necessary to draw triangles in a back-to-front

order. When drawing opaque surfaces, it is usually faster to draw in a front-to-

back order to take advantage of per-fragment early-z-culling available on most

graphics hardware. Because our algorithm generates surfaces in a slice-by-slice

fashion, either can be achieved nearly for free with a few simple modifications.

The first step is to rotate the rendering volume perpendicularly to the viewer

so that the sweep happens in the desired direction, and to rotate the particles in

the opposite direction so they remain in the same place. Secondly, the block subdi-

vision routine must be modified to render blocks in the desired order according to

distance from the viewer. Within a block, because of the structure of the marching

slices algorithm, slabs are polygonized in an approximately unidirectional order.

The order is only broken when the algorithm steps back to do work on a slab “be-

low” the current slab, which happens when seeding fails to find the bottommost

portion of surface enclosing a particle. Because this is rare and the polygons that

are incorrectly sorted rarely occlude each other, in practice the algorithm as de-

scribed above is good enough for use in interactive applications without any visible

artifacts (as can be seen in our demo videos).

In cases when absolutely perfect back-to-front sorting is required, instead of a

global index buffer, separate index buffers can be allocated per slab and flushed

41

2 RTPIE - Real-Time Particle Isosurface Extraction

out in a back-to-front order for each rendered block. Within an individual cube, we

can guarantee that polygons are output back-to-front by preprocessing the static

lookup tables which are used by the polygonization routine. Here, we can also

ensure that polygons are output with consistent winding to facilitate back-face

culling. Because both of these optimizations modify static lookup tables, there is

no run-time penalty for their use.

In cases where it is necessary to keep the rendering volume aligned with a

fixed basis vector rather than rotating it with respect to the user, front-to-back or

back-to-front rendering can still be achieved. In these cases, the algorithm must

be modified to perform a sweep along the axis that is most closely aligned to the

user. In this approach, if the viewer has a wide field of view, they may be able

to look edgewise through a slice. In this case, the cubes within each slice must be

cached and individually sorted by distance to viewer before they are rendered. We

leave it as an exercise to the user of the algorithm to determine the right set of

tradeoffs between perfect Z-ordering of triangles and performance.

2.7 Particle Lookup Cache

Field value calculations are in the inner loop of both the marching cubes and march-

ing slices algorithm and are generally the place where these algorithms spend the

majority of computing time. This makes them the major target for optimization,

and is the reason why we cache and reuse these values at sample points.

Because the field of influence of the particles is limited to a fixed cutoff radius,

it is possible to optimize the field calculations by iterating only over the particles

42

2 RTPIE - Real-Time Particle Isosurface Extraction

within Rc from a given sample point using a spatial data structure which we refer

to as a particle lookup cache. Observing that lookups are only performed at field

corners, we relax the requirements for the particle cache by only requiring it to

know which particles influence the field at a corner, and not at any arbitrary point

in space. At the same time, in order to avoid wasting time in the field calculation

routine, we require that the particle cache give an exact solution, without returning

any particles that are outside of Rc.

A simple way to implement such a particle cache would be to build a linked

list at each corner referencing all the particles that are within Rc of the corner.

However, the insertions spanning a sphere with radius Rc, would be computation-

ally expensive and consume a considerable amount of memory. We can greatly

improve upon this approach by observing that the linked list traversal during field

calculation can serve double duty by simultaneously performing a one dimensional

search through 3-space. This means that instead of marking a spherical 3D region,

we only need to mark a 2D region for each particle in the shape of a disk.

2.7.1 Data Structure and Algorithm

Our approach, which we call a 2D projection 1D lookup operates as follows: We

allocate a single 2D array of dimension Nx + 1 by Ny + 1 called the projection

slice. Each element in the array is simply a pointer to a doubly linked list. A list

pointed to by element (x, y) in the projection slice will contain one entry for each

of the particles with influence on the corners in column (x, y). Each element in

the list contains the integral values minz and maxz specifying the range of slices

43

2 RTPIE - Real-Time Particle Isosurface Extraction

0 1 2 3 4 5 6 7 8 9 10

R
6

6 6
R R

6

7

8

8

8

8

8

4 4

5

G G

B

B

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

0

8

8

66

6 44

slab # slice #

maxz

midz
minz
particle pointer

8

Figure 2.11: Cutaway diagram of insertion into particle cache.

in which the particle has influence, an integer midz specifying the slab containing

the center of the particle, and a pointer to the particle (Figure 2.11).

The lists are built by quick-sorting all particles from smallest to largest z coor-

dinate, and then, for each particle, inserting a list element into each (x, y) column

where it has influence. In order to force the field values to 0 along the boundaries

of a block as described in section 2.4, we avoid inserting elements into columns

that are on a boundary, and clamp minz and maxz to values between 1 and Nz.

Thus, there is no additional cost for enforcing this constraint during field value

calculation. For particles with a field of influence smaller than Rc, it is straight-

forward to modify the insertion step to shrink the radius in which the particle will

be found and ensure an exact lookup.

44

2 RTPIE - Real-Time Particle Isosurface Extraction

Whenever a lookup is performed, the current corner location (x, y) is indexed in

the projection slice to access a list containing all particles that have influence in that

column. Next, to find the starting point, the list is searched for the bottommost

entry with midz ≥ z − dRc/Se. The list is then traversed upwards to the topmost

entry with midz ≤ z+dRc/Se. This traversal effectively finds every particle within

a cylinder of radius Rc and height 2Rc around the lookup point.

To cull this list down to the sphere of radius Rc, quick integer comparisons

are performed for every element to test that minz ≤ z and maxz ≥ z. If so, the

element has influence at the lookup point, and is handed to the field calculation

routine. Since we are likely to do lookups above and below recent lookups, to speed

up finding of the starting point, the pointer at location (x, y) in the projection slice

is updated with the first element found by each particle lookup in that column.

2.7.2 Memory Usage and Performance

Because the cylindrical volume covered by the list traversal is efficiently culled

down to a spherical volume with two integral tests, the 1D search is only slightly

less efficient than a simple linked list traversal, yet allows for a significant reduction

in the time and memory cost of particle insertion. Furthermore, due to the nearly

unidirectional traversal of the marching slices approach, the doubly linked list at

a column is usually traversed only once while looking for starting points. Thus,

the work done to find starting points is small and proportional to the number of

element inserted into the particle cache.

To estimate the memory consumption of our approach, we note that approxi-

45

2 RTPIE - Real-Time Particle Isosurface Extraction

mately πR2
c/S

2 elements are inserted for each particle. With a cutoff radius Rc = 3

and cube size S = 0.8, approximately 45 elements are inserted per particle. If each

of these is 16 bytes in size, the cache consumes 720 bytes per particle, with a cache

of 1,000 particles consuming a reasonable 720KB of data.

For situations where many more than 1,000 particles may be inserted into a

block, we can reduce memory usage by keeping only the necessary z range of

particles in cache. This can be done by removing particles that fall outside the

useful z range or by keeping multiple projection slices, each one storing only the

elements on a single slab.

Compared to the well known class of approaches used by Wyvill et al. [52, 51],

Müller et al. [28, 30, 31] and Triquet [47], which use either a point insertion and

a 3D lookup or a 3D insertion and point lookup, our approach is the only one

that does an exact lookup, without returning any particles outside of Rc. This

is because these approaches use a separate grid for particle lookups with cube

size Rc (much coarser than the marching cubes/slices grid) in order to keep the

number of cubes traversed during insertion or lookup down to a reasonable 3×3×3

volume. Thus, these approaches return 6.5 times more particles than our approach

by looking in a (3Rc)
3 volume, rather than a (4/3)πR3

c volume, which they must

then cull by performing floating point distance calculations for each particle. With

these approaches, if the lookup grid resolution is increased to reduce the number

of false positives, the insertion/lookup costs quickly grow and dominate overall

isosurface extraction costs, especially when each cube access requires a hash map

lookup as suggested by previous approaches for unbounded rendering.

46

2 RTPIE - Real-Time Particle Isosurface Extraction

In our benchmarks, the memory usage of our approach was never significantly

higher than with previous approaches because we build and destroy our particle

cache on a per block basis, and can be further reduced by removing unneeded

particles from the cache (as explained previously). In terms of time, although our

approach must perform a 2D projection for each particle, it performed significantly

faster than previous approaches in all of our benchmark tests because the number

of lookups done per block is typically much greater than the number of insertions,

and because our lookups are fast and don’t return false positives.

2.8 Results

In order to accurately measure the performance of our technique and compare it

to alternative approaches, we created simple particle simulations of a fountain, an

amorphous blob, and a particle explosion (Figure 2.12). We use these as bench-

marks to compare memory usage and rendering speed across different rendering

approaches on a 3.2Ghz Intel Core 2 Duo processor with 4MB of L2 cache (only

one core was used for computation). The approaches we compared are:

1. Our new approach: Marching slices with block subdivision and a 2D projec-

tion 1D lookup particle cache.

2. Surface-following marching cubes with blocking algorithm to allow for un-

bounded rendering, and a point insert, 3D lookup cache.

3. Surface-following marching cubes using a hash map to store corners, and a

point insert, 3D lookup cache also using a hash map for particle lookup.

47

2 RTPIE - Real-Time Particle Isosurface Extraction

Figure 2.12: Screenshots of simulations used for performance comparison. Top
row from left to right: fountain, blob, and explosion simulations. Bottom row:
wireframe views of simulation with blocks identified by different colors.

48

2 RTPIE - Real-Time Particle Isosurface Extraction

Fountain (3000 particles, Rc = 3.0, T = 0.2, S = 1.0)
Approach Cubes / Sec Tris / Sec Render Mem Cache Mem FPS

1 1,636,312 3,171,223 0.517 0.894 46.6
2 947,294 1,836,490 7.474 8.020 27.2
3 462,378 898,280 4.756 0.368 13.1

1 1,967,465 3,811,094 0.437 0.099 33.2
2 790,634 1,533,241 8.495 8.001 13.3
3 298,943 586,777 8.211 0.052 4.8

Approach Cubes / Sec Tris / Sec Render Mem Cache Mem FPS
) 1000 particles, Rc = 3.0, T = 0.2, S = 0.6 (Explosion

1 2,145,530 4,288,108 0.246 0.137 77.7
2 1,228,188 2,458,939 8.655 8.000 49.3
3 559,283 1,118,880 3.179 0.022 22.5

Approach Cubes / Sec Tris / Sec Render Mem Cache Mem FPS
Blob (100 particles, Rc = 3.0, T = 0.2, S = 0.3)

Approach Cubes / Sec Tris / Sec Render Mem Cache Mem FPS
1 1,706,667 3,388,940 0.749 0.408 11.7
2 968,568 1,924,154 8.827 8.002 6.5
3 451,350 899,031 2.051 0.346 3.0

Fountain (3000 particles, Rc = 3.0, T = 0.2, S = 0.5)

Approach Cubes / Sec Tris / Sec Render Mem Cache Mem FPS
1 1,859,083 3,657,317 0.741 1.548 29.1
2 1,033,835 2,033,716 10.513 8.022 16.2
3 477,330 939,837 8.611 0.364 7.4

Fountain (3000 particles, Rc = 3.0, T = 0.2, S = 0.75)

Figure 2.13: Performance comparison (memory is measured in MB). Rc is the
cutoff radius, T is the threshold (a threshold of 0.2 corresponds to an isosurface of
radius 1 for a single particle), S is the size of the cube grid.

49

2 RTPIE - Real-Time Particle Isosurface Extraction

All of these approaches were instrumented to measure frame rates, memory

usage, and cubes and triangles rendered per second (Figure 2.13). We measured

memory usage separately for the corner caches, which we refer to as Render Mem

and for the particle lookup caches which we refer to as Cache Mem. These fields

only measure active memory which is both written to and read from during algo-

rithm execution, and do not measure the memory used for the vertex and index

buffers, since these are statically allocated, and in our benchmarks, are the same

size (960KB) for all three approaches.

We first compare Approaches 2 and 3 to evaluate the costs and benefits of

using the block subdivision component solely versus the hashing approach. We

see that over all the test scenarios, frame rates, cubes/sec and tris/second are

approximately doubled when using block subdivision instead of hashing. However,

memory usage is higher, mainly due to the large 3D arrays used for lookups of

field values and nearby particles.

By replacing surface-following marching cubes with marching slices, and using

a 2D insertion 1D lookup particle cache along with the block subdivision approach,

we realize a significant performance improvement over the other approaches, with

our algorithm performing 1.5 to 2.5 times faster than marching cubes with block

subdivision and 3.5 to 6.9 times faster than the hashing approach across our bench-

marks. We also significantly improve upon the biggest drawback of surface-following

marching cubes, reducing memory usage by a factor of 8 to 43, and improving upon

the memory usage of the hashing approach by a factor of 2 to 15 across our bench-

marks. However, we notice that our particle cache memory footprint, while only

50

2 RTPIE - Real-Time Particle Isosurface Extraction

a fraction of overall memory usage, is still 2 to 5 times larger than that of the

hashing approach. This is a reasonable tradeoff given the increase in overall per-

formance, and can be improved greatly in cases where large quantities of particles

are rendered by using the approaches mentioned in section 2.7 for keeping particles

cached only over the active slices.

Because of the small memory footprint of our approach, it can reside fully

in the main memory of any modern computer along with other components of

an interactive application (which in games include AI, physics, networking and

world rendering). This is critical in interactive applications where virtual memory

paging is unacceptable because it causes intermittent stalls, degrades performance

and frustrates users.

Furthermore, because the memory footprint is so small, the algorithm can

effectively take advantage of processor level 2 cache, avoiding cache misses which

can stall the pipeline of a modern processor for as much as 500 cycles. Thus, we get

a similar benefit as in out-of-core algorithms, but at one level higher on the memory

hierarchy! This characteristic is especially beneficial on multi-core hardware which

shares cache memory between multiple processes and hardware with small amounts

of working memory such as hand held devices and cell processors.

We demonstrate the suitability of this algorithm in complex, fully interactive

virtual environments. For our first experiment, we constructed a fountain simu-

lated with 1, 300 particles and placed it in an outdoor video-game environment

with virtual characters (Figure 2.6). The player can interact with the simulation

by throwing objects and explosives into the fountain. The demo uses back-to-

51

2 RTPIE - Real-Time Particle Isosurface Extraction

Figure 2.14: Here the blob monster is shown in the game environment with textured
skin and fully extended tentacles.

front sorted rendering of polygons, and a refractive and reflective water shader for

transparency, and runs interactively at a frame rates between 50fps at 60fps.

Our second experiment uses our algorithm to animate an amorphous particle

monster (Figure 2.14). The monster is composed of 250 particles which are ani-

mated with several procedural behaviors such as emerging from a sewer, growing

tentacles, forming a ball, coating a wall, and chasing players.

The tentacles, when grown, are cylindrically textured by interpolating per par-

ticle basis vectors and length coordinates onto the surface using a custom field

calculation routine. These are then used to generate u, v texture coordinates into

52

2 RTPIE - Real-Time Particle Isosurface Extraction

Figure 2.15: Procedural animation of blob monster. Squares represent particles,
and the color of the square represents the particles function (yellow particles belong
to the brain, light blue particles are structural, dark blue particles are feet, and
green particles are arms. Yellow lines show the tree structure of the blob, and red
lines represent “tendons” which apply forces to hold the blob together.

a preloaded texture by a custom vertex calculation routine. We also dynamically

control the radius of a tentacle along its length by modulating the strength of field

functions of the tentacle particles.

The monster is scripted to actively move around the scene, interact with ob-

jects, and chase the player. Furthermore, it can be blown to bits with explosive,

53

2 RTPIE - Real-Time Particle Isosurface Extraction

Figure 2.16: Here, the blob monster reassembles after being blown apart by an
explosion. Note that it formed several mini monsters which are merging back
together to form a big monster.

and will automatically reassemble into its original shape, using a set of rules to

build a tree data structure which represents an internal skeleton (Figures 2.15

and 2.16). This demo runs interactively at 50-60fps depending on the number of

physics objects the monster is colliding with and at 60-70fps during replay. Demo

videos for both of these experiments along with various screenshots are included

as supplementary materials in our I3D publication [36].

54

2 RTPIE - Real-Time Particle Isosurface Extraction

2.9 Conclusion and Future Work

In this chapter, we have presented a technique for real-time particle isosurface ex-

traction. This approach consists of three novel components: a block subdivision

algorithm which divides the render volume into seamless blocks, marching slices

which renders isosurface in a slice-by-slice manner, and a 2D insert 1D lookup

particle cache which enables fast and accurate lookups for field contributing par-

ticles. Using our technique, we demonstrated significant memory reductions and

speed improvements over existing approaches for unbounded particle isosurface

extraction. We also employed this approach in a video game environment, show-

ing how our technique allows for rendering of dynamic particle-based entities with

quality approaching that of offline techniques and has the potential to bring novel

experiences to users of interactive applications.

Although we presented this algorithm running in a single thread, we have exper-

imented with parallelized algorithms running on a quad core machine. We found

that there is potential for a nearly linear speedup by parallelizing at the block-

level for particle distributions that span more than one block, where incidentally,

performance improvements are most important. Given that the latest generation

of computing and game platforms have multiple cores, this is an important direc-

tion for future exploration. Furthermore, because this algorithm operates with 2D

data structures, it should also be amenable to implementation on programmable

graphics hardware, which is optimized for 2D texture lookups, and where we can

expect tremendous performance gains, and many new and exciting applications.

55

3
IFSR - Interpolating Force

Sensing Resistance

3.1 Introduction

This chapter describes my work in the area of multi-touch interaction. From the

time that I started my research in this field and invented IFSR to the time that

I sat down to write this thesis, multi-touch input has gone from being an active

area of research, with limited commercial success to a technology that most people

carry in their pocket, purse, or book in the form of a touch-screen phone or tablet.

Although multi-touch input has been an active area of research for nearly three

decades [6], it still suffers from the absence of an easily available high-quality touch

input device that is accurately responsive to pressure and can scale inexpensively

to large or small form factors.

Sensors based on Interpolating Force Sensing Resistance (or IFSR) enable in-

expensive multi-touch pressure acquisition. They can accurately measure entire

images of pressure with continuous bilinear interpolation, permitting both high-

frame-rate and high-quality imaging of spatially variant pressure upon a surface.

Though the use of force-variable resistors at multiple points of contact is not

new [25], previous work in this area has focused mainly on arrays of discrete and

independent sensors. The key difference between our technology and what existed

56

3 IFSR - Interpolating Force Sensing Resistance

previously is the newly developed principle of Interpolating Force Sensing Resis-

tance (IFSR), which closely mimics the multi-resolution properties of human skin,

in which the position of a touch can be detected at finer scale than the discrimi-

nation of multiple touches.

Figure 3.1: Writing on an UnMousePad and the resulting force image (warmer
colors represent greater pressure). The red dot corresponds to the high pressure
point created by the pen tip.

The development of IFSR based sensors and an improved understanding of

their electrical properties enhances the type and quality of information that may

be obtained in situations where entire images of pressure need to be captured

and continuously tracked (Figure 3.1). IFSR based sensor technology is inherently

unobtrusive, inexpensive, and very durable. It has a very wide range of potential

applications in many sectors of society, primarily because it enables multi-touch

pressure imaging at a low cost in a wide variety of form factors.

57

3 IFSR - Interpolating Force Sensing Resistance

3.1.1 The Invention of IFSR

I was introduced to multi-touch interaction through Jeff Han’s display wall project

which was based on an optical touch sensing technology called FTIR [18]. As a

member of that project, I developed a demo application consisting of an interactive

virtual lava lamp based on the real time fluid rendering technology described in

the previous chapter. The software allowed multiple users to move, squish and

separate glowing blobs of lava by using swipe, pinch, and finger spreading gestures.

Furthermore, because the display walls were pressure sensitive in addition to being

touch sensitive, users had a third dimension of input – they could heat the lava,

causing it to become more buoyant and float upwards, by applying pressure.

The major drawback of Jeff’s display walls was that they required a complex

and volume-consuming setup, including projectors and cameras behind the display.

One day, after spending hours in the NYU black-box working with a massive FTIR

display unit, I thought to myself that it would be revolutionary if it were possible

to create something similar to an FTIR display that was inexpensive and compact

enough to fit on one’s desk. I realized that the FSR materials and manufacturing

methods that we had used earlier (in a previous startup called SmartLines) could

be adapted to create an array of tiny FSR sensors for touch interaction.

However, the main challenge with FSR was that the base materials were not

transparent. I had been struggling to think of a way to get around this problem,

when my advisor Ken Perlin suggested a very straightforward solution – an opaque

sensor could still be extremely useful in scenarios where the sensor and display are

58

3 IFSR - Interpolating Force Sensing Resistance

separate. The sensor could sit on the table-top, potentially replacing a keyboard

and mouse, and the user would look ahead at a display instead of looking down

at their fingers. We called this user interaction modality LOTUS, which stood for

Look Outwards, Touch Upon Surface.

With this as our vision, in early 2008, I set out to manufacture a force-sensing

array using FSR. At first, I looked at standard FSR arrays, such as those built

by companies like Tekscan [25]. However, these types of sensors could not achieve

the level of accuracy that was necessary for touch interaction. The solution to this

problem, which led to the invention of IFSR, is discussed in later chapters.

3.1.2 Birth of Touchco

In October 2008, my advisor and I, along with several students from NYU’s Me-

dia Research Lab demonstrated some of the first sensors based on IFSR at the

UIST conference in Monterey, California. Almost instantly, we were inundated

with commercial inquiries from companies such as Wacom, Sony, Samsung, Nokia,

Apple, Google, Microsoft and Amazon, just to name a few. We realized that we

were onto something significant, and decided that it would be a good idea to start

a company to commercialize the technology.

In early 2009, I assembled a team, registered a company named Touchco, and

found some office space near NYU. Our goal was to develop the technology for in-

clusion into a commercial product, and we did this by developing both the hardware

and software that was necessary to create a product based on IFSR. This included

bringing up new vendors and finding suitable materials for IFSR production, im-

59

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.2: The desktop of the future concept device which was developed at
Touchco combined a 24” transparent touch surface on top of an LCD with a sec-
ond forward facing 24” LCD. The bottom LCD was used to display custom user
interface controls. Here we show a drawing application, where the bottom touch-
display shows controls and a detail view while the main display shows an overview
of the final image.

60

3 IFSR - Interpolating Force Sensing Resistance

proving the manufacturing and assembly process for our sensors, performing relia-

bility testing, developing low cost scanning electronics, developing algorithms and

firmware, creating drivers and demo applications for multiple operating systems,

and creating custom prototypes and development kits.

We received an incredible amount of external interest in a wide range of ap-

plications of the technology. Some of the applications that we decided to pursue

included sensors for measuring foot pressure distribution, measuring how people

sat on seats, wrapping around pens, adding touch interaction to drawing tablets,

creating drums, keyboards and new musical instruments, and using IFSR as a

touch sensor below flexible displays. We also made significant progress on a trans-

parent version of IFSR which was used to create a prototype device we called

Desktop of The Future (Figure 3.2). This and several other concept devices were

demonstrated in Emerging Technologies at SIGGRAPH 2009.

3.1.3 Acquisition

In mid-2009, we were approached by one of our customers with an offer to acquire

Touchco. We believed that working with a major consumer electronics company

would speed the development of our technology and that together, we would cre-

ate some truly iconic, world-changing devices, especially because our technology

worked so well with electronic paper displays, which rely on reflected light for read-

ability and thus would appear much more paper-like if the touch sensor could be

placed below the display. Although we were able to significantly advance the per-

formance and manufacturing of the IFSR technology, due to internal politics and

61

3 IFSR - Interpolating Force Sensing Resistance

a series of events outside of our control, the technology was not commercialized,

and the founders of the company went off to work on other projects.

Although IFSR was not commercially successful, I believe that the technology

has inspired a host of other pressure sensitive touch technologies including Synap-

tics’ ForcePad [41] and Tactonic’s Interpolating sensors [44]. I also believe that

it’s not the end of the road for the technology, and that one day, there will be a

renewed interest and commercial products based on IFSR.

3.2 Related Work

Multi-touch input technologies fall mainly into three broad categories: optical,

capacitive and resistive. Each of these affords a particular set of advantages and

disadvantages.

3.2.1 Optical Sensing

Optical multi-touch sensing generally incorporates a digital video camera behind

the touch surface to form an image of a user’s fingers and possibly hands. Microsoft

Surface [11] integrates images captured simultaneously from several digital video

cameras to obtain both touch and proximity information. In systems based on

Frustrated Total Internal Reflectance [18] a finger or hand touch disrupts the path

of infrared light that is undergoing total internal reflectance inside a glass surface.

The scattered light is captured by a digital video camera placed behind the glass.

The ability to determine touch pressure by incorporating a soft light-scattering

layer over the touchable FTIR surface has also been demonstrated [10]. Because

62

3 IFSR - Interpolating Force Sensing Resistance

of the use of a camera at some distance behind the touch surface, many of the

early optical multi-touch technologies tended to be bulky and sensitive to lighting

conditions.

More recently, attempts have been made to incorporate optical sensing into the

bezels or into the display surface of the display itself. Companies such as RPO,

Neonode, ELO Touch Systems, Flatfrog and RAPT have developed touch sen-

sors which work by detecting interruption of IR beams fired either slightly above

a display or within a display’s cover-glass layer. This type of touch technology,

which was originally developed by Bell Labs [7], has proliferated since the patents

expired. Attempts have also been made to incorporate optical touch technologies

into display backlights [46, 8] and into display pixels themselves [12]. Although

these technologies are very promising, they require tradeoffs and complex inte-

gration between display and touch technologies and have thus not been broadly

incorporated into commercial products.

3.2.2 Capacitive Sensing

Recently, multi-touch capacitive sensing has become the most common technol-

ogy used in touch-screens. One of the best known and iconic implementations of

a capacitive multi-touch system is the touch-screen of the Apple iPhone [21], a

successful adaptation of technology developed by FingerWorks [49]. Other early

multi-touch systems included the DiamondTouch system [13], developed by Mit-

subishi Electric Research, which was able to distinguish between different users

by incorporating each user’s body into a unique capacitive circuit, and SmartSkin

63

3 IFSR - Interpolating Force Sensing Resistance

[35], developed by Sony Computer Science Laboratories, which was able to detect

several different gestures, including hover above the touch surface.

The majority of multi-touch capacitive systems are based on a technology called

mutual capacitance, or projected capacitance. To detect touches, a touch controller

drives a series of transmit electrodes with an electrical signal at a known frequency.

That frequency is then received by a series of receive electrodes, which form a

grid with the transmit electrodes. The presence of a finger absorbs some of the

transmitted electric fields, reducing the capacitive coupling between the transmit

and receive electrodes. This reduction of capacitive coupling is then interpreted as

a touch.

One of the biggest advantages of capacitive touch technologies, is that there are

no moving parts, and unlike optical technologies, they are insensitive to lighting

conditions. Furthermore, they can easily be made transparent using transparent

conductors such as ITO. However, capacitive touch is highly susceptible to electri-

cal noise. Noise can come from a variety of sources including chargers, fluorescent

lights, and displays. Noise increases the power usage of capacitive sensors since

multi-sampling and many extra layers of analog and digital filtering are necessary to

deal with the noisy signals. Furthermore, the signal strength varies strongly based

on the user’s skin conductance and the amount of capacitive coupling between the

user, the device and a ground reference. All of these factors make capacitive touch

sensing incredibly complex and difficult to implement well in practice.

Another drawback of capacitive touch systems is that they can only measure

the surface area of a contact, and not the level of force applied. Furthermore, that

64

3 IFSR - Interpolating Force Sensing Resistance

measurement is often imprecise due to variations in skin conductance between in-

dividuals. This limits touch interaction to a vocabulary of taps and swipes, and

misses out on our ability to apply varying levels of force. To address this issue,

companies such as Pressure Profile Systems (PPS) have developed a capacitive

force sensing array technology [42]. Their sensors are created by sandwiching a

compressible material such as silicon between a set of row and column electrodes.

Pressure applied to the sensors deforms the silicon, bringing the plates closer to-

gether and increasing their capacitive coupling. This change in capacitive coupling

can be detected by electrical circuitry and interpreted as a touch. Today, this

technology has primarily found use in medical and industrial applications, as the

electronics are too complex and expensive for most consumer electronics.

Another approach for creating a force-sensing touch pad is to suspend a capac-

itive touch sensor on top of four force sensors located at the corners. One such

technology is Synaptic’s ForcePad technology [41]. The drawback of this technol-

ogy is that it is mechanically complex and that it can only measure the centroid

of the force applied, and can not distinguish the force applied by the individual

touches.

A further limitation of capacitive touch technology is its reliance on the con-

ductive properties of the water within the human body – most capacitance-based

systems are only able to track a finger, not a stylus or other non-conductive object.

One exception is the N-trig DuoSense [32] technology, which is able to track both

fingers and a stylus, by making use of an active pen. These special pens use a

battery to power an integrated circuit which transmits a radio signal through a

65

3 IFSR - Interpolating Force Sensing Resistance

pressure sensitive tip. However, the pens used in these systems are expensive, and

the accuracy is often poor due to electrical noise and because the sensor needs to

triangulate the position of the stylus based on the strength of radio signals rather

than directly sensing the contact point of the pen tip.

3.2.3 Resistive Force Sensing

Multi-touch sensors based on arrays of resistive sensors can have a flat form fac-

tor, are inherently inexpensive, use little power and can measure applied force.

Such devices are typically based on the principle of Force Sensing Resistance [15].

An FSR device is a continuous electrical switch in which electrical conductivity

increases gradually as external force is applied. In one common configuration,

which is often referred to as “through” mode, two conductors which have both

been coated with FSR ink are placed into mutual contact.

The FSR principle is often used to create discrete sensor arrays. An inherent

limitation of such arrays is their inability to track at resolutions finer than the

spacing between successive sensing elements, and their inability to track a stylus

when it enters the dead zones between sensels. For this reason, the JazzMutant

and Stantum sensors [22] are limited to applications such as music remixing that do

not require high precision, whereas Tekscan sensors [25] cost thousands of dollars

due to the high cost of electronics required to scan a high-density array. Another

approach to creating multi-touch pressure sensors is to combine multiple buttons

that can each sense a position and a force [48]. However, these devices still suffer

from the inability to track the position of styli and fingers between sensor cells.

66

3 IFSR - Interpolating Force Sensing Resistance

To improve tracking, one could put a thick sheet of rubber over existing devices,

blurring the force image, and thereby creating a form of positional interpolation.

However, per our experiments, such a layer of rubber needs to be approximately

half an inch thick to have any appreciable effect. Besides the packaging, weight and

aesthetic issues that this creates, the blurring makes it impossible to distinguish

a stylus press from hand/finger input. In addition, the damped signal has higher

latency and greatly reduced temporal resolution. Recently, a company called Tac-

tonic Technologies [44], has developed a structured material which solves some of

the issues associated with mechanical interpolation. However, the Tactonic sensor

still requires and additional force sensing layer above the sensor to operate. Our

approach allows for high-resolution, high-speed, force-sensitive positional tracking

without the expense of a high-resolution discrete FSR array, or the signal losses

associated with a mechanical blurring layer.

3.3 Our Contribution

An all-purpose pressure-sensitive multi-touch input device needs to do at least two

quite different things: (i) track a stylus with high resolution, and (ii) distinguish

between different fingers of a human hand (Figure 3.3). These are very different

requirements. Fingertips are relatively large, and their centers never get much

closer to each other than about half an inch. In contrast, a stylus tip generally

needs to be tracked to within a fraction of a millimeter. In addition, while the

distance between nearby fingers may be large, fine position sensing is useful for

detecting subtle finger movements, such as leaning and wiggling.

67

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.3: Finger touches remain far apart, but a stylus must be tracked precisely.

What has not been shown previously is a multi-touch input technology that

provides, simultaneously, a flat and flexible/bendable form factor, the option of

transparency, ability to inexpensively scale up to large sizes, accurate pressure

sensing, self-calibration, interpolation between touches, low power and low cost.

We have achieved this by revisiting the use of FSR materials in a novel configura-

tion. In the remainder of this chapter, we discuss the following key contributions:

1. The general principle underlying the sensor.

2. Construction of IFSR sensors.

3. Methods for electrically scanning IFSR sensors.

4. Methods for improving accuracy.

5. Methods for interpreting device output in software.

6. Applications of IFSR sensors.

68

3 IFSR - Interpolating Force Sensing Resistance

3.3.1 Operating Principle

Figure 3.4: Discrete versus bilinear sampling. a) Area response of one sensel of a
discrete FSR sensor (left) vs. an IFSR sensor (right). b) Reconstruction of pen
position with a discrete FSR sensor yields an error in position (left), while an IFSR
sensor properly reconstructs position with minimal error (right).

Interpolating Force Sensing Resistance (IFSR) is a new and cost-effective method

we have developed for using FSR to capture images of pressure upon a surface.

With pre-existing arrays of discrete FSR sensors, it is not possible to correctly

reconstruct the position of a point touch with a low-resolution grid. In contrast,

the IFSR has sensels with overlapping regions of sensitivity (see Figure 3.4). The

69

3 IFSR - Interpolating Force Sensing Resistance

spatial drop-off in sensitivity at each sensel of an IFSR is near-linear on both X and

Y axes, resulting in a piecewise bilinear response kernel. The bilinear kernel allows

the position of any touch, even a very small point touch, such as that of a stylus

tip, to be accurately interpolated by calculating the voltage-weighted average of

the sensel positions (see Equation 3.1). Effectively, the IFSR yields an anti-aliased

image of the pressure applied to it.

(X, Y) =

(∑
i

∑
j i ∗ Vout(i, j)∑

i

∑
j Vout(i, j)

,

∑
i

∑
j j ∗ Vout(i, j)∑

i

∑
j Vout(i, j)

)
(3.1)

As a result, the IFSR has two notions of resolution. The first is how close two

touches can be before they can no longer be distinguished from each other. We

refer to this as grid resolution. The second measures the much finer resolution at

which a single point can be tracked. We refer to this as positional resolution. An

IFSR allows grid resolution to be much lower than positional resolution. Because a

sensor with lower grid resolution has less active electrodes, compared to a discrete

FSR sensor, an IFSR sensor with similar positional resolution can be manufactured

with relatively inexpensive drive and A/D conversion electronics. Because of the

lower grid resolution, IFSR sensors also require less bandwidth to process and

transmit the acquired data.

3.3.2 UnMousePad Construction

We have built IFSR sensors in various form factors including credit-card sized

sensors, large disk-shaped sensors, transparent sensors, and 12” x 16” sensors for

70

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.5: 8.5” x 11” UnMousePad with drone wires

two-handed operation. We affectionately call our 8.5” x 11” form factor IFSR

device (shown in Figure 3.5) the UnMousePad. It is conveniently sized like a page

of standard letter paper. It has an 6.85” x 9.21” active sensing area consisting of

a 40x30 grid of sensels spaced at 6mm intervals – sufficient to obtain two samples

per finger width, and therefore to reliably distinguish between two fingers even

when those fingers are very close together.

The UnMousePad consists of two paper-thin 8.5” x 11” sheets of PET plastic

attached together at the edges. On the inner side of the top sheet is a circuit pattern

consisting of 40 parallel active column electrodes spaced at 6mm (with non-active

drone electrodes in-between at 1mm intervals). The circuit pattern is coated with

71

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.6: The UnMousePad is constructed by sandwiching together two sheets
with electrodes at right angles. The electrodes are covered with a thin layer of FSR
ink. A contrast-enhanced image of FSR material at 20x magnification is provided.

a thin, solid layer of FSR ink. As this ink dries, its exposed surface hardens to

form microscopic bumps (see Figure 3.6). Because the sensor uses a solid layer of

ink, it is easy to align it with the electrode layer, reducing manufacturing cost.

A printed wire runs from each electrode to a connector area that is provided on

one side for interfacing with electronics. The inner side of the bottom sheet has

a similar pattern with 30 row electrodes which are perpendicular to the column

electrodes.

72

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.7: As pressure is applied to the sensor, the FSR on the top and bottom
layer intermeshes, increasing conductivity.

Force sensitivity results from the upper and lower bumpy FSR layers inter-

meshing with each other as pressure is applied (Figure 3.7). Each point of contact

creates an additional current path. These current paths can be thought of as

parallel resistors. Because the conductivity of parallel resistors sums together,

the number of contact points increases as pressure is applied, which results in a

proportional increase in conductivity.

A circuit board, with off the shelf electronics and a micro-controller, is con-

nected to the top and bottom layers. The circuit board reads values from the

UnMousePad and sends pressure images to a computer via USB. In our implemen-

tation, we drive the column electrodes and read out signals on the row electrodes.

But, it is worthwhile to mention that the sensor is bidirectional – it can just as

well be driven on the row electrodes and read out on the column electrodes.

73

3 IFSR - Interpolating Force Sensing Resistance

3.3.3 Scanning the UnMousePad

Figure 3.8: One time-slice during a sensor scan. The vertical red line indicates a
powered column electrode, the horizontal blue line indicates a metered electrode,
and black lines indicate grounded electrodes. The pink area illustrates bilinear
sensitivity in the metered region which is centered around the powered column
and metered row electrodes and bounded on all sides by grounded electrodes.

A micro-controller on the circuit board scans all row-column intersections in

succession. At any given moment of the scan, some column i is connected to a pos-

itive voltage source (+3.3V for our micro-controller) and some row j is connected

to an A/D input port on the micro-controller, which measures output voltage.

Meanwhile, all other rows and columns are connected to ground (see Figure 3.8).

Consider the highlighted (pink) region in Figure 3.8. If the sensor is not being

touched in this region, a steady stream of current will flow from the positive voltage

source to the neighboring grounded electrodes to the left and right along the top

FSR surface, but no current will flow between the top and bottom surfaces.

When a user touches the UnMousePad in the highlighted region, current is able

74

3 IFSR - Interpolating Force Sensing Resistance

to flow through to the bottom surface. Some of this current goes to the nearest

grounded electrodes on the bottom surface above and below, and some of it goes

through the metered electrode to the circuitry that is measuring voltage (Figure

3.8). As the position of the touch moves nearer to the intersection between the

positive voltage source and the metered output line (i.e. toward the center of the

highlighted region), the measured voltage increases.

3.3.4 Avoiding False Positives

Figure 3.9: False positives are avoided by grounding all non-active electrodes.
Green dots indicate real touches. The thick red line indicates a current path
that would result in the detection of a phantom touch (red dot) if the non-active
electrodes weren’t grounded.

It might seem that a multi-touch device with passive junctions (as opposed to

a transistor at every row-column intersection) would produce false positives. In

75

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.9, green dots indicate three touches where wires cross, and the red dot and

path indicate an erroneous phantom touch that might result when input voltage

is applied to column 4 and output voltage is measured at row 5.

The UnMousePad does not suffer from this problem because at any moment

during the scan, all conducting lines that are not set to either the positive voltage

source or the metered output are set to ground. In the above example, the current

would simply drain to ground at both row 2 and column 7, rather than at row 5.

3.3.5 Interpolation Linearity

Ideally, the drop-off in response with respect to distance from a row/column in-

tersection should be linear in both the X and Y directions. However, our first

generation of UnMousePad prototypes had very poor interpolation behavior – sen-

sitivity as a function of distance from the active intersection fell off much faster

than expected.

In theory, this non-linearity could be compensated for in software, by use of

a look-up table or by analytically solving for position of a point given the signal

from the sensor. However, we found that a non-linear response reduced the sensor’s

signal-to-noise ratio, making this approach impractical. After careful analysis and

experimentation, we found that there were two sources of error. We discuss each

one in turn, together with methods to reduce them.

Radial Spread Non-Linearity

Touching where two wires cross (top of Figure 3.10) requires very little travel of

current transversely through the high-resistance FSR layer, whereas touching far

76

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.10: Touch sensitivity at corner (top) and center (bottom) of a 6mm cell.
For a touch at the corner of the cell, current travels a short distance through the
low-resistance metal trace, shown in blue, before traveling through the junction
between the top and bottom FSR layers. For a touch at the center of the cell,
current must travel transversely through a layer of high-resistance FSR ink (shown
in red) before crossing the junction.

away from the nearest conductor (bottom of Figure 3.10) requires a significant

distance of current travel within each FSR ink layer. Because the current spreads

radially around the touch point, the resistance increases non-linearly as the touch

point moves farther away from the area where conductors cross.

Using a field-solver that I implemented to precisely simulate the flow of cur-

rent through the layers of the UnMousePad, we can see the radial pattern in the

gradient of voltage around a touch point (top of Figure 3.11). This pattern occurs

consistently with touches of varying force and size, and is greatest for a touch near

the center of a cell.

77

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.11: Potential field for a 100g point touch on a sensor with and without
drone wires (computed with field solver). Thick red, blue and black lines represent
powered, metered and grounded electrodes respectively. Red and blue vectors
correspond to gradients on the top and bottom surfaces respectively. a) Without
drones, potential field is curved, leading to non-linear response. b) With drones,
linearity of potential field is greatly improved.

78

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.12: Drone wires are inserted between active row and column electrodes.

We addressed this issue by altering the printed conductor pattern to insert,

between every pair of active wires, numerous parallel “drone wires” (see Figure

3.12). These passive wires have the effect of greatly shortening the maximum

effective path that electric current needs to travel through the resistive FSR ink

in one direction, effectively creating an anisotropically conductive surface. This

shapes the voltage potential field to vary mostly along the direction perpendicular

to the wires in a given layer.

As the number of drone wires increases, the scale at which the radial spread of

current occurs proportionately decreases, and would approach zero for an infinitely

fine drone conductor pitch. With our current manufacturing technique, we can

79

3 IFSR - Interpolating Force Sensing Resistance

reliably print electrodes with 1mm spacing. Thus, in the UnMousePad, we place

five drone wires between each pair of active electrodes. This greatly improves the

tracking resolution for fingers and styli and the accuracy of force measurements

(see Section 3.4.5).

Voltage Divider Non-Linearity

While it is possible to completely eliminate the non-linearity due to the radial

spread of current by introducing a large number of drone wires, there is a second

form of non-linearity that results from the fact that when a touch occurs, the

current flowing from the top layer of the sensor to the bottom layer disrupts the

voltage gradient between electrodes on both the bottom and top layers of the

sensor. This effect would not go away even if there were an infinite number of

drone wires. Furthermore, this effect cannot be fully compensated for in software

because error in position and error in force are difficult to distinguish.

Figure 3.13: Schematic of effective circuit at one grid cell for a single point touch.

To understand the impact of this effect and find ways to reduce it, we created a

simplified electrical schematic that models the behavior of a sensor cell in response

80

3 IFSR - Interpolating Force Sensing Resistance

to a single point touch (Figure 3.13). In this model, Vsource is the voltage applied to

a powered column. Vout is the voltage measured at the metered row. x and y are the

positions of the touch and vary from (0, 0) to (1, 1). Rf is the resistance between

the top and bottom layers of FSR material. We refer to this as the “through”

resistance. F (x, y) is the force applied at point (x, y). Rc is the resistance between

two adjacent column electrodes of the sensor. Rr is the resistance between two

adjacent row electrodes.

Rc and Rr depend on sensor design parameters which include the “transverse”

resistance across the surface of the FSR material (Rfsr), the length and spacing of

row and column electrodes (Lr, Lc, Sr, Sc), the density of drone wires (D), and the

thickness of FSR material (Tfsr). R
′
c and R′r are the resistances of all other current

paths to ground from a row and column electrode, respectively, and are equal to

Rc and Rr in our sensor. We can estimate the values of these four constants with

some simple math based on the sensor design parameters (Equations 3.2 and 3.3):

R′c = Rc =
Rfsr ∗ Sc ∗ (1−D)

Lc ∗ Tfsr
(3.2)

R′r = Rr =
Rfsr ∗ Sr ∗ (1−D)

Lr ∗ Tfsr
(3.3)

The following set of three equations (Equations 3.4, 3.5 and 3.6) result from

solving for Vout(i, j) for a given pressure distribution P (x, y) over the modeled

sensor area A:

81

3 IFSR - Interpolating Force Sensing Resistance

Vout =

∫∫
A

a ∗ Vinput ∗ x ∗ y
b(x− x2) + c(y − y2) +Rf/P (x, y)

dx dy (3.4)

b =
1

1/Rc + 1/R′c
≈ Rc/2 (3.5)

a = c =
1

1/Rr + 1/R′r
≈ Rr/2 (3.6)

We notice that the resulting equation has three constants, a, b, and c, which

are dependent on Rc and Rr. Looking at the model, we see that two of these

terms, b and c, control the linearity of the response – if b and c were both zero,

Vout would be perfectly linear with respect to the magnitude and position of an

applied pressure distribution. However, in practice, reducing these values results in

decreased output voltage and increased consumption of power by the device. Thus,

the best we can do is find a ratio of b and c that is low with respect to Rf/P (x, y),

and yet high enough to allow the external electronics to read the sensor.

Luckily, there are two factors that work to our advantage, producing a desirable

ratio. The first is that in the useful range of operation for a human operator, the

FSR inks we use tend to have a fairly high through resistance. In our prototype,

this resistance varies between 1.2 M Ohms and 2.2 K Ohms for forces between 5

grams and 200 grams. The second is that with proper selection of FSR inks, we can

attain values of b and c that are approximately 300 Ohms and 400 Ohms respec-

tively. Thus, we have approximately an order of magnitude difference between the

82

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.14: Calculated response of a single row/column intersection of the Un-
MousePad sensor resulting from a point touch of 100 grams at different (x, y)
locations. Voltage decays in a near-linear fashion along X and Y axes.

“through” and “transverse” resistance. The result is a nearly linear sensitivity (see

Figure 3.14), which increases the signal-to-noise ratio of our sensor and results in

linear tracking of both finger touches and point contacts, such as those of a stylus.

3.4 UnMousePad Characteristics

3.4.1 Electronics

The main component on the UnMousePad circuit board is a PIC24H micro-controller

produced by Microchip Technology, Inc. which uses five M74HC595 shift registers

to power one column electrode at a time while grounding all others, then reads

analog voltage values from each even row, followed by each odd row, while four

83

3 IFSR - Interpolating Force Sensing Resistance

other M74HC595 shift registers are used to alternately ground the odd or the even

rows respectively. The micro-controller then switches to the next column and re-

peats this process for the remaining columns. The micro-controller converts the

analog voltage values to digital values via an onboard 12-bit analog-to-digital con-

verter. Finally, the micro-controller sends the complete frame of data to the host

computer and starts the process all over to scan the next frame.

3.4.2 Scan Rate

The data stream from the UnMousePad consists of 1200 pairs of bytes forming

a 40x30 image of force on the sensor. Each frame is followed by a terminating

sequence. Whenever a run of successive zeros is encountered, a special code fol-

lowed by the number of zeros is sent, effectively run-length-encoding long strings

of zeros for areas of the sensor not being touched. The host computer receives,

decompresses, and processes these pressure images at approximately 60 frames per

second. The measured latency is 1/60th of a second. The rate-limiting factor

is the USB transceiver chip, which restricts the data rate into the computer to

900kbits/sec. Because the A/D converter on the micro-controller is capable of up

to a million samples per second, it is possible to attain sample rates of over 500

frames per second by switching to a faster USB transceiver.

It would appear that this method of scanning would not scale well to larger

sensors, and would be insufficient for applications such as musical instruments

where scan rates over 1000 Hz are necessary, or for mobile devices that need to

draw as little current as possible. However, the IFSR architecture has a useful

84

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.15: Scan resolution can be dynamically varied. Left: all active lines are
scanned; Middle: every third active line is scanned, other lines effectively become
drone conductors (gray); Right: sensor is scanned at the lowest possible resolution,
effectively turning it into a single-touch sensor.

property which allows a dynamic trade-off between spatial resolution on the one

hand, and faster scan rate and lower power consumption on the other.

Spatial resolution can be lowered simply by disconnecting sets of column or row

electrodes, effectively turning them into drone conductors (this can be done using

electronic logic that has a high-impedance mode). For instance, if we disconnect

every other column and row electrode, the grid resolution is effectively reduced by

a factor of two, and the scan rate goes up by a factor of four. Taking this further,

if every column and row electrode except the first and last is disconnected, the

sensor acts as a single bilinear cell which can only measure the centroid and sum

of pressure exerted over the entire sensor surface (see Figure 3.15).

It is also possible to adaptively scan the sensor with finer detail only in areas

where contact is made or where fine detail is required. This allows for the best

of both worlds – providing high resolutions in areas where there is contact, while

providing high speed and low power usage over areas with no contact.

85

3 IFSR - Interpolating Force Sensing Resistance

This variable resolution property allows for the scanning of the sensor at many

thousands of frames per second in order to detect very short duration impacts.

It also permits a “sleep mode”, whereby battery-powered devices that need to

conserve power can idle without drawing significant power as they wait for a touch

event to awaken them. Finally, it permits us to build large, high resolution sensors

without significantly impacting electronics cost.

3.4.3 Power Consumption

The shift registers mentioned above are used because they are capable of sourc-

ing/sinking much more current than the micro-controller – up to 35mA. We found

that the sensor could draw instantaneous currents of as much as 30mA when scan-

ning a row/column intersection where the applied force was over 5kg. However,

because 1200 points are scanned every frame, even when a great deal of force is

applied to one point on the sensor, the average current draw during the span of an

entire frame remains very low. We have found that during full speed operation,

the sensor and shift registers which drive it typically consume less than 1mA.

Surprisingly, the bulk of the current used by the UnMousePad, as much as

80mA, is actually drawn by our micro-controller. In the future, this can be greatly

improved by using a more efficient micro-controller, and optimizing the micro-

controller’s code to allow it to go into low-power energy saving states during A/D

conversion and when the sensor is not being touched. Even with the current power-

hungry micro-controller, the total power consumption of the UnMousePad is low

enough that it can be powered entirely from the USB bus.

86

3 IFSR - Interpolating Force Sensing Resistance

3.4.4 Sensitivity

Figure 3.16: Sensitivity testing. Upper Left: setup showing sensor on scale,
plunger, and ohm-meter connected to sensor; Upper Right: closeup of test ar-
eas cut from sensors; Lower Left: finger-shaped silicone rubber plunger; Lower
Right: plunger fitted with pen-tip

Using a calibrated force gauge and weights (Figure 3.16), we found that the

lightest force the UnMousePad can reliably detect is 5 grams, and the lightest

touch that can be reliably tracked as it moves over the UnMousePad is in the

range of 15-30 grams. By comparison, the force needed to press down a typical

computer keyboard key is about 65 grams, and for a typical mouse button, is about

90 grams.

87

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.17: Force vs resistance (top) and force vs conductance (bottom) at various
force ranges (0 to 100 grams on the left, and 0 to 2000 grams on the right) for a
point touch and an area touch.

We also found that our sensor has a near-linear electrical conductance response

to forces between 5 grams and 2 kg (Figure 3.17). Furthermore, comparing the

response of a finger and pen touch, we see that the sensor measures force accurately

for touches with different contact areas. The strongest measurable touch on the

UnMousePad is around 7 kg - however, we could only verify the accuracy of forces

up to 2 kg due to limitations of our test equipment. We suspect that 2 kg of force

88

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.18: Sensitivity drift over time with intermittent activations at one-second
intervals (top), and with persistent activation over a period of 16 minutes with a
logarithmic time scale (bottom).

is a reasonable upper limit for most user interface applications, since we observed

that pressing that hard with a finger was quite painful.

We also measured the repeatability of sensor force measurements (Figure 3.18).

We found that with repeated activations, performed at one-second intervals, the

measured force had a 5% standard deviation with very little drift. However, we

found that with steady pressure at a single point, sensitivity increased over time.

Although the increase was 5% over the first five seconds, we found that the rate of

89

3 IFSR - Interpolating Force Sensing Resistance

increase decayed exponentially with time. After removing the force and reapplying,

the exact same pattern repeated. The authors suspect that this is due to the

FSR surfaces intermeshing ever closer at a microscopic level over time, and that

this effect can be compensated in software. In practice, we found that this small

variation in force sensitivity over time was not perceivable by human operators.

3.4.5 Resolution

Figure 3.19: Resolution test setup. UnMousePad captures a curve as it’s drawn
on a sheet of paper attached to the top of the UnMousePad.

To experimentally determine the point-tracking resolution of the UnMousePad,

we record the (X, Y) positions of our point tracking algorithm over time, as a curve

is drawn on a sheet of paper placed over the UnMousePad. A “French Curve”

90

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.20: Resolution test result. Curve captured by the sensor is overlaid onto
the thinned reference curve scanned from the paper.

mounted 1/4” above the sensors is used as a guide. Next, we scan the reference

curve drawn on the paper with an optical scanner at 600dpi and use a thinning

algorithm to find the line passing through the center of the curve. Finally, the

curves are registered and the error is computed as the root mean square of the

distance from each point in the test curve to the closest point on the reference

curve.

91

3 IFSR - Interpolating Force Sensing Resistance

Using this procedure, we determined that the UnMousePad can track a fine

point such as a pen-tip with a standard deviation of 0.2934 mm (about 0.0115

inches, or 87 dots per inch). Note that this result was achieved with raw data,

without applying any filtering, smoothing, or calibration.

3.5 Data Processing and Touch Tracking

For most graphics and HCI applications of the UnMousePad, rather than using

raw images of pressure, it is often useful to work with a higher-level representation

of the user’s interaction with the device. In our driver-level code, we process the

raw images to find touches. These touches are then tracked from frame to frame.

Each touch consists of a unique identifier, an (x, y) position, the total force of the

touch and the shape of the oval that encircles the touch. It also carries lower level

data such as the pixels that comprise the touch.

A list of touches is provided to applications, as are change events such as

“touch up”, “touch down” and “touch moved”. Furthermore, we can detect when

two touches come so close together that they are no longer distinguishable (which

can happen when a user pinches two fingers very close together) and when a single

touch splits into two (the opposite of the first event). We call these two events

“touch merged” and “touch split” respectively.

In order to get the full benefit of the UnMousePad’s pressure imaging capability,

the data must be properly processed. This processing consists of several stages of

filters. Many of these filters operate on 2D images of force using standard image

processing techniques. Because of the interpolating nature of the device, these

92

3 IFSR - Interpolating Force Sensing Resistance

UnMousePad Sensor

Force Image Acquisition
and Compression.

USB Interface

Force Image Decompression

Physical Layer

3x Linear Image Upscaling

40x30 Force Image

Time Domain Smoothing

40x30 Force
Image

40x30 Force Image

Finger Sized Gaussian Blur

120x90 Force Image

Peak Detection

120x90 Force Image

Blob Segmentation

List of (x,y) Peaks

Touch Extraction,
 Classification and

Matching with Previous Frame

List of Blobs

List of Touches
Touch Events

(up/down/move/
split/merge)

Touch Biasing

120x90 Force Image

Driver Layer

Application Layer

User Applications

(fe
ed

ba
ck

 p
at

h
fo

r t
ou

ch
es

 fr
om

 p
re

vi
ou

s
fra

m
e)

Figure 3.21: Illustration of data flow from sensor to application.

93

3 IFSR - Interpolating Force Sensing Resistance

images are inherently low-resolution and can be processed efficiently in real-time

on a micro-controller or a CPU using a small amount of processing power. The

processing consists of the following steps:

1. Force Image Acquisition and Compression: Micro-controller captures a frame

of data, and compresses it for transmission over a USB bus.

2. Force Image Decompression: Data is decompressed into a 40x30 image and

normalized to grams.

3. Time Domain Smoothing: Noise is reduced by averaging current frame with

last smoothed frame.

4. Force Image Upscaling: To enable accurate segmentation into touch events,

upscale resolution by 3x. Reduce forces correspondingly by factor of 9.

5. Gaussian Blur: To improve finger tracking and remove singularities intro-

duced by linear upscaling, perform a gaussian blur approximately the radius

of a finger touch.

6. Touch Biasing: When force is near minimum touch threshold, or when touches

merge or split, there can be oscillation between touch/not-touch in successive

frames. To avoid these instabilities, bias blurred image by adding a small

gaussian-shaped force signature wherever touches were detected in previous

frame.

7. Peak Detection: Each pixel of biased image is compared against neighbors.

Mark any pixel with a higher force than all neighbors as a peak.

94

3 IFSR - Interpolating Force Sensing Resistance

8. Blob Segmentation: Segment image into areas around each peak by seeding

each blob with peak location, then iteratively expanding each blob to en-

compass neighboring pixels with lower force value than pixels in blob. Stop

growing at zero-valued pixels or when blob reaches a pre-set max size.

9. Touch Extraction: Compute position, size, total force and surrounding oval

for each blob (using both blob data and unblurred image). Position is com-

puted as the force-weighted average of the positions of pixels within each

blob.

10. Touch Classification: Classify each touch as either (i) noise if below minimum

touch force threshold, (ii) point touch (stylus) if ratio of force to area is above

a predefined threshold or (iii) area touch (finger, palm or object) if ratio of

force to area is below threshold.

11. Matching with Previous Frame: Match up touches with those in previous

frame having corresponding position and size, giving each touch the same

unique id as in previous frame. First time touches generate touch down

events, and touches that disappear generate touch up events. When two

touches of force a and b merge to a touch of force a + b, generate a merge

event; vice versa for a split event.

12. User Applications: Send pressure images and touch events to user applica-

tions.

95

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.22: Setup for camera based hand visualization. The camera is mounted
on a tripod above the IFSR sensor.

3.5.1 Camera-Based Hand Visualization

To enable tracking of the hand above the UnMousePad surface, we mount a Firefly

MV digital video camera atop the computer monitor, pointing downward at the

UnMousePad (Figure 3.22). The Firefly captures 320x240 images at 60fps. The

UnMousePad is covered with black paper, so the user’s hand will stand out in clear

contrast. Infrared lighting and a camera which sees in IR can be used to reduce

variations due to skin tone. We perform a small-radius Gaussian blur to remove

any speckle, and then extract fragments of the silhouette edge with Marching

Squares. A perspective correction matrix is applied to the two endpoints of each

96

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.23: User’s view of their own hand overlaid on application.

edge fragment so that the four corners of the UnMousePad are mapped to the four

corners of the application window. The fragments are then displayed as thick black

vector lines overlaid upon the application. To the user it appears as though their

own hand is visible as a real-time outline on the computer display (Figure 3.23).

In addition, the hand silhouette is analyzed to provide the application software

with a persistent identifier for each finger of the user’s hand. In this way, appli-

cations that use two or more fingers can maintain a persistent ID for each finger,

even before any fingers have physically touched the UnMousePad. Fingertips are

identified by finding matches within the silhouette shape for circular arcs that are

approximately one finger width in diameter. This is done by first initializing a

weight image to zero. Then for each silhouette edge fragment, this weight image

is incremented at locations perpendicular to the fragment at a distance of half a

finger width. Centers of fingertips are where the highest weights are accumulated.

97

3 IFSR - Interpolating Force Sensing Resistance

We found that silhouettes are extremely powerful because they enable hover

and positioning of the hand in LOTUS applications, serving a similar purpose as

the mouse cursor in traditional WIMP interfaces. In future work, we would like

to replace the 2D camera with a 3D stereoscopic camera, such at that described

in Chapter 1, which will enable even richer interactivity by combining in-air 3D

gestures with precise surface interaction.

3.6 Applications

Because of IFSR’s low cost, precision and ability to sense pressure, it is a versatile

technology that can be used for a variety of applications that are not possible or

practical with other technologies:

3.6.1 Bendable Sensors

Sensors based on IFSR technology are physically bendable. Their bending radius

depends upon which material is used for the plastic – thinner is more bendable. We

currently use either 3 mil or 5 mil thick plastic substrates, which permit bending

radii of approximately 0.5” and 1.0”, respectively. We have taken advantage of

this flexibility to create applications that call for a sensor to be wrapped around a

cylindrical object such as a mug (Figure 3.24). Uses such as wrapping the sensors

around pens or around steering wheels have also been proposed. An interesting

related feature of IFSRs is that they can be used as bend sensors.

98

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.24: IFSR Sensor wrapped around a mug.

3.6.2 Touch on Back

We have created IFSR sensors that are extremely thin and compact enough to be

wrapped around the back of electronic devices (Figure 3.25). Working with the

creators of the NanoTouch [2] concept, we incorporated one of our sensors onto

the back of a small device which has an OLED display on the front, to prototype

what force sensitive touch interaction would feel like if used on the back of a small

device such as a watch (Figure 3.26).

On such devices, screen real-estate is often very limited – thus, touching on

the front of the device can be impractical. Because IFSR is force sensitive and

extremely accurate, the user is able to use a light touch to move a cursor, and

a harder touch to select items on the screen. A visualization, such as a circle

99

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.25: A compact and power efficient IFSR sensor for use on the back of small
electronic devices. This sensor can also be used to replace computer track-pads.

Figure 3.26: A concept of a device with touch-on-back interaction. Note how the
position and force applied by the fingers is visualized on the display at the front
of the device.

which changes color or size corresponding to pressure or a simulated deformation

of the screen image, gives the user feedback on the amount of force applied and

the position of their finger relative to on-screen items.

100

3 IFSR - Interpolating Force Sensing Resistance

3.6.3 Medical and Industrial Pressure Imaging

Figure 3.27: An IFSR sensor is used to measure the pressure distribution of a foot.

Figure 3.28: An IFSR sensor can be used to measure the pressure distribution of
a solid object. In this case, the pressure distribution of a mug is visualized.

Sensors based on IFSR also have many applications in the medical field. For

instance, they can be used to measure the pressure distributions of people’s feet

for the creation of custom orthotic inserts (Figure 3.27).

101

3 IFSR - Interpolating Force Sensing Resistance

They can also be used to measure the shape and/or flatness of objects in

manufacturing and industrial processes (Figure 3.28). One potential use for IFSR

would be in the manufacturing of IFSR sensors themselves. The printing process

for IFSR sensors involves the use of an automated screen-printing press, which uses

a squeegee to push ink through a mesh. Without IFSR, there is no easy way to

measure the pressure applied by the squeegee as it travels over the print surface.

Using an IFSR placed below the object being printed to measure the distribution

of squeegee pressure can improve the consistency of the screen-printing process,

leading to more controlled manufacture of printed electronics such as IFSR sensors.

3.6.4 Sensing Through Paper and Flexible Displays

Figure 3.29: IFSR can track a stylus through several layers of paper.

We have found that the IFSR sensors can sense touches quite well through one

or more sheets of paper. For example, when the UnMousePad is placed behind a

102

3 IFSR - Interpolating Force Sensing Resistance

pad of paper, the user can draw, write or scribble on the top sheet of the pad, and

we can use the information that comes through to the UnMousePad to reconstruct

the drawn image (Figure 3.29).

Similarly, the UnMousePad can read quite well through emerging thin flexible

display technologies such as flexible OLED and e-ink. Because such displays are

often manufactured on substrates similar to those used for the IFSR, our technology

can readily pick up pressure through them. This allows for the addition of touch

sensing without any loss of display brightness or contrast.

3.6.5 Touch Screens

In addition to opaque IFSR sensors, we have developed sensors with transparent

FSR materials. Opaque FSR inks are typically composed of a carbon-infused

polymer, whereas transparent FSR inks are made of a clear polymer infused with

a transparent conductor. We have found transparent IFSR sensors to be well-suited

for use over LCD displays.

A 24” diagonal transparent IFSR on top of an LCD display was demonstrated

at SIGGRAPH Emerging Technologies in 2009. It was used to enable a multi-user

multi-touch pressure sensitive drawing application (Figure 3.30). In this applica-

tion, users could simultaneously use their left hand to switch the drawing color

and drawing tool, and to control pan and zoom while using their right hand to

draw on a canvass.

The conductive electrode lines can either be transparent or opaque. Transpar-

ent conductors are typically made of ITO (indium tin oxide). Unfortunately, due

103

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.30: A 24” diagonal transparent IFSR prototype demonstrated at SIG-
GRAPH Emerging Technologies in 2009.

to the high resistance of ITO, IFSR sensors with transparent conductors cannot be

made very large. Opaque conductors, made of silver, copper, aluminum, and even

carbon nano-tubes, have much better conductance than any known transparent

conductor, and can be made so thin as to be virtually invisible. They can also be

patterned and/or aligned with the pixels of an LCD screen to make them even less

visible. This was the approach we used in the 24” diagonal sensor prototypes.

We have also found that thin (6 mil) glass is suitable as a substrate for IFSR

sensors, with no appreciable loss of spatial resolution. Glass can be advantageous

over plastic for transparent touch-screen applications, since many people prefer the

feel of glass.

104

3 IFSR - Interpolating Force Sensing Resistance

3.6.6 Musical Instruments

Figure 3.31: Drumming on a 13” diameter IFSR sensor. The MIDI sound synthe-
sizer and speakers can be seen in the background.

Multi-touch position sensing, along with pressure sensitivity and the ability to

scan at high frame rates make IFSR sensors ideal for musical instruments. We

have used IFSR to build instruments such as pianos and drums (Figures 3.31).

To create the drum, we developed a circular sensor design that uses curved row

and column electrodes (Figure 3.32). In this sensor, we chose to sacrifice multi-

touch resolution to gain scanning speed. This allowed us to scan the sensor at

approximately 1000Hz, which is essential for drumming. Instead of processing the

signal with a computer, to avoid latency, we sent the output via MIDI directly to

a sound synthesizer. The position on the drum-pad was used to vary pitch and

timbre, creating a very rich and lifelike sound.

105

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.32: The drum sensor employs curved column and row electrodes.

IFSR was also used by the well known instrument designer Roger Linn to

develop a musical array instrument called the LinnStrument [23].

3.6.7 Games

We have explored the use of IFSR sensors in gaming applications. In one of

these applications, we used an UnMousePad as a giant force-sensitive track-pad

to control a multi-user multi-touch Tetris game, which we affectionately called

Touchtris (Figure 3.33). In this game, Touchtris pieces swirled in from the outside

of the screen, as if they were falling into a black hole. Users had to work together

to align the pieces and make them disappear before they filled up the whole screen.

In the spirit of the original Tetris game, whenever users created a block that was

4x4 or bigger, it would be eliminated.

106

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.33: Here, two users can be seen using an UnMousePad to cooperatively
play our Touchtris game, which is a 2D multi-touch analogue of Tetris.

In this game, the IFSR was used in the LOTUS configuration. When a user

touched the UnMousePad lightly, a circle would show up on screen to indicate the

position of their touch. Whenever force above a threshold was applied, the touch

would engage with a Touchtris piece below it, allowing the user to translate and

rotate the piece into place.

107

3 IFSR - Interpolating Force Sensing Resistance

3.6.8 Design and Simulation

Figure 3.34: An application used to model 3D planets using an UnMousePad which
we call WorldSculpt.

IFSR sensors are ideal for design and simulation applications which require

rich multi-finger, multi-dimensional input. One of the design applications we have

prototype is WorldSculpt (Figure 3.34), an application which allows a user to

sculpt a planet with their hands. Users can simultaneously use their left hand to

rotate the planet and select sculpting tools while using their right hand to sculpt.

Sculpting tools include operations such as “push”, “pull” and “smooth”. IFSR is

also an ideal input device for more complex sculpting tools such as the particle-

based sculpting software presented in Chapter 1.

108

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.35: Users can interact with a water simulation in real-time using an
UnMousePad.

We have also experimented with the use of an UnMousePad in simulation

applications. For example, we have crated a water simulation where users can

swipe, tap and push on the surface of the UnMousePad to apply forces to a virtual

pool of water (Figure 3.35).

This type of user input device can be very useful for engineers for naturally

inputting forces, velocities or other physical vector-based phenomena into a sim-

ulated system. For example, an aerospace engineer could use this to see what

happens when air-flow disturbances, that she crates with her hands, interact with

a simulated aircraft. This technology can also be useful for teaching physics to

students. In fact, even our simple water simulation was able to attract hours of at-

tention from curious students who used it to create waves and to see what happens

when they crash into each other.

109

3 IFSR - Interpolating Force Sensing Resistance

3.6.9 New Gestures

Figure 3.36: A heavy finger wiggles but a light finger slides.

The availability of fine resolution in pressure makes it possible to distinguish

between gestures in interesting ways. This property distinguishes IFSR from capac-

itive input sensors such as the iPhone’s screen which only measures contact area.

Fine pressure resolution is needed to correctly interpret many pressure-dependent

gestures. For example, lateral movement of a finger that is pressing down indicates

wiggling, whereas the same lateral movement of a lightly touching finger indicates

displacement by sliding (Figure 3.36).

We have also used pressure in a 3D manipulation task to distinguish between

translation and scaling operations (light pressure) and rotation (heavy pressure).

To complete the task, users had to align a series of 3D tea-cups with gray-colored

teacup outlines (Figure 3.37). Users of this application reported that they found

this new mode of interaction to be more intuitive and easier than using a separate

modal input to switch between these operations.

110

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.37: Manipulation of objects in 3D is intuitive with an UnMousePad.
Multi-finger motion is used to move the tea-cup objects in the plane of the screen;
pinching and spreading fingers move the objects in and out of the screen, and
applying pressure switches into a rotation mode.

3.6.10 Isometric Control

Fine pressure resolution also permits highly accurate isometric control. For ex-

ample, we have found that users of the UnMousePad quickly become proficient at

manipulating virtual 3D objects with seven degrees of freedom by placing their fin-

gers upon the pad to translate, rotate and scale an object. In another application

we have used isometric pressure of fingers on the UnMousePad to simultaneously

manipulate the eight faders of a BCF2000 MIDI controller, mapping pressure di-

rectly to fader settings (Figure 3.38).

111

3 IFSR - Interpolating Force Sensing Resistance

Figure 3.38: Simultaneous isometric control of 8 MIDI faders.

In all of the above examples, the control scheme can be effective only because

we are using an input device capable of simultaneously tracking all finger touches

with fine pressure resolution. These and other examples of unique applications of

our device can be seen in the supplemental video to our SIGGRAPH paper [38].

3.7 Conclusion and Future Work

In later work, we planned to improve our driver-level algorithms to add useful

features such as the ability to automatically distinguish the pressure profiles of

palms, wrists, the side of the hand, and other objects, and to move more of the

processing into the micro-controller to enable applications that don’t require a

112

3 IFSR - Interpolating Force Sensing Resistance

host PC. We also planned to improve our transparent sensors for use over LCD

screens, and to integrate the UnMousePad drivers with Microsoft Windows, which

recognizes multi-touch devices. We also began researching combining IFSR with

various forms of active haptic response, notably arrays of piezoelectric transducers.

We also planned to explore a variety of form factors, including flexible inserts

for shoes and clothing, non-flat IFSR skins for such devices as game controllers,

tennis racket grips and robots, as well as continuously extendable IFSR coverings

for floors, tables and walls. We are particularly interested in capturing the subtle

dynamics of human foot placement, as this capability opens up a wide range of

applications, from dance to physical therapy. Furthermore, we believe that the

core principle of the IFSR device – the anti-aliasing of physical phenomena before

conversion to digital signals – is an exciting principle applicable to the transduction

of sound, electro-magnetic waves and many other types of signals.

Unfortunately, due to the acquisition of Touchco, we do not know when, if ever,

this further research will take place. We hope that one day, the original vision of

Touchco will be realized and that IFSR will become available for use in these and

many other applications that we haven’t even thought of yet.

In conclusion, IFSR technology has the potential to revolutionize the field of

multi-touch interaction by providing a low-cost, high-quality, flexible pressure-

imaging device. As the availability of IFSR devices increases, and the cost of

manufacturing flexible electronics continues to drop, we anticipate that they will

find a myriad of new uses, and will come to play an important role in many aspects

of everyday life.

113

Conclusion

Today, we are gradually moving into a world where digital technologies replace fa-

miliar physical implements. Some notable examples include tablets replacing pen

and paper, the combination of CAD tools, 3D printing and other automated man-

ufacturing methods replacing traditional design and craftsmanship, and computer

games replacing play in the real world. As this trend progresses, users expect these

digital technologies to offer high-fidelity interfaces and to behave in natural ways

similar to the physical interactions that they replace.

This dissertation has presented three novel components. Chapter one presented

a technique for generating 3D depth maps in real time from a stereo camera, and

showed some applications including robot navigation, simulated camera effects,

and tracking the human body for user interaction tasks. The second chapter

presented a set of algorithms for real-time rendering of particle-based surfaces

and showed applications including interactive fluids, virtual clay and procedurally

animated characters based on particles. The third chapter presented a multi-touch

force-sensitive surface based on interpolating force sensing resistance and showed

applications such as 3D manipulation, virtual instruments, writing, and interaction

with a simulated water surface.

These components can be thought of as pieces to a puzzle for realizing a larger

vision, which combines 3D tracking of the user in space, responsive high-resolution

touch surfaces, and software tools that mimic the real world to create immersive

virtual environments. Seamless integration of these hardware and software compo-

114

CONCLUSION

nents will allow users to naturally interact with a virtual world. The combination

of these technologies will enable new and improved applications in the realms of

work and play in areas such as art, music, design, modeling, scientific visualization,

simulation and video games.

Although this thesis is by no means the last word in any of these three areas,

I believe that my work has helped to illuminate a path for others to a world

where user interaction technologies are more responsive and more accurate, fully

capturing the speed, richness and subtlety of human touch and expression, and

where software enables and encourages real-time interaction and fluid expression

of the user’s vision in whatever task they seek to accomplish in our increasingly

digital world.

115

Bibliography

[1] Bart Adams, Toon Lenaerts, and Philip Dutré. Particle splatting: Interac-

tive rendering of particle-based simulation data. Technical Report CW 453,

Katholieke Universiteit Leuven, 2006.

[2] Patrick Baudisch and Gerry Chu. Back-of-device interaction allows creating

very small touch devices. In Proceedings of the 27th International Conference

on Human Factors in Computing Systems, pages 1923–1932. ACM, 2009.

[3] Stan Birchfield and Carlo Tomasi. Depth discontinuities by pixel-to-pixel

stereo. In ICCV, pages 1073–1080, 1998.

[4] James F. Blinn. A generalization of algebraic surface drawing. Computer

Graphics and Interactive Techniques, 1(3):235–256, 1982.

[5] Jules Bloomenthal. Polygonization of implicit surfaces. Computer Aided Ge-

ometric Design, 5(4):341–355, 1988.

[6] William Buxton, Ralph Hill, and Peter Rowley. Issues and techniques in

touch-sensitive tablet input. Proceedings of the 12th Annual Conference on

Computer Graphics and Interactive Techniques, pages 215–224, 1985.

[7] Frank John Clement and Barton Leigh Richardson. Coordinate detection

system. U.S. Patent No. 3764813, 1973.

116

BIBLIOGRAPHY

[8] Microsoft Corporation. Pixelsense. 2011. http://www.microsoft.com/

en-us/pixelsense/pixelsense.aspx.

[9] Valve Corporation. Portal 2. 2011. http://www.thinkwithportals.com.

[10] Philip L Davidson and Jefferson Y Han. Extending 2D object arrangement

with pressure-sensitive layering cues. Proceedings of the 21st Annual ACM

Symposium on User Interface Software and Technology, pages 87–90, 2008.

[11] Isabelo de los Reyes, Nathanael Roberton, Brian Calvery, Timothy J. E.

Turner, Adrian Chandley, Daniel Makoski, Paul Henderson, Egor Nikitin,

Tarek Elabbady, and Phillip Joe. Function oriented user interface. U.S.

Patent Applications Publication No. US 2007/0198926 A1, 2007.

[12] Willem den Boer and Adiel Abileah. Integrated light sensitive liquid crystal

display. U.S. Patent Application No. US20070109239 A1, 2005.

[13] Paul Dietz and Darren Leigh. Diamondtouch: a multi-user touch technology.

Proceedings of the 14th Annual ACM Symposium on User Interface Software

and Technology, 2001.

[14] Ines Ernst and Heiko Hirschmüller. Mutual information based semi-global

stereo matching on the GPU. In Advances in Visual Computing, pages I:

228–239, 2008.

[15] Franklin N Eventoff. Electronic pressure sensitive transducer apparatus. U.S.

Patent No. 4313227, 1979.

117

BIBLIOGRAPHY

[16] James Fung and Steve Mann. OpenVIDIA: Parallel GPU computer vision. In

Proceedings of the 13th ACM International Conference on Multimedia, pages

849–852. ACM, 2005.

[17] Raia Hadsell, Pierre Sermanet, Ayse Erkan, Jan Ben, Jeff Han, Beat Flepp,

Urs Muller, and Yann LeCun. On-line learning for offroad robots: Using

spatial label propagation to learn long-range traversability. In Proceedings of

Robotics Science and Systems 07, 2007.

[18] Jefferson Y Han. Low-cost multi-touch sensing through frustrated total in-

ternal reflection. Proceedings of the 18th Annual ACM Symposium on User

Interface Software and Technology, pages 115–118, 2005.

[19] Adrian Hilton and John Illingworth. Marching triangles: Delaunay implicit

surface triangulation. Technical Report CVSSP 01, University of Surrey, 1997.

[20] Heiko Hirschmüller. Accurate and efficient stereo processing by semi-global

matching and mutual information. In Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, vol. 2, pages 807–814. IEEE Com-

puter Society, 2005.

[21] Steven P Jobs et al. Touch screen device, method, and graphical user interface

for determining commands by applying heuristics. U.S. Patent Application

No. 20080122796, 2008.

118

BIBLIOGRAPHY

[22] Pascal Joguet and Guillaume Largillier. Devices and methods of controlling

manipulation of virtual objects on a multi-contact tactile screen. U.S. Patent

Applications Publication No. US 2007/0198926 A1, 2007.

[23] Roger Linn. Linnstrument. 2010. http://www.rogerlinndesign.com/

preview-linnstrument.html.

[24] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolu-

tion 3D surface construction algorithm. Computer Graphics and Interactive

Techniques, 21(4):163–169, 1987.

[25] Charles F Malacaria. A thin, flexible, matrix-based pressure sensor. Sensors

Magazine., 1998.

[26] Inc. Microsoft. Kinect. 2010. http://www.xbox.com/en-US/kinect.

[27] Leap Motion. Leap motion controller. 2013. http://www.leapmotion.com.

[28] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid

simulation for interactive applications. Symposium on Computer Animation,

pages 154–159, 2003.

[29] Matthias Müller, Richard Keiser, Andrew Nealen, Mark Pauly, Markus Gross,

and Marc Alexa. Point based animation of elastic, plastic and melting objects.

Symposium on Computer Animation, pages 141–151, 2004.

[30] Matthias Müller, Simon Schirm, and Matthias Teschner. Interactive blood

simulation for virtual surgery based on smoothed particle hydrodynamics.

Technology and Health Care, 12(1):25–31, 2004.

119

BIBLIOGRAPHY

[31] Matthias Müller, Simon Schirm, Matthias Teschner, Bruno Heidelberger, and

Markus H. Gross. Interaction of fluids with deformable solids. Computer

Animation and Virtual Worlds, 15(34):159–171, 2004.

[32] Haim Perski and Meir Morag. Dual function input device and method. U.S.

Patent No. 6762752, 2002.

[33] PointGrey. Triclops SDK. 2006. http://www.ptgrey.com/products/

triclopsSDK/triclops.pdf.

[34] William T. Reeves. Particle systems – A technique for modeling a class of

fuzzy objects. Computer Graphics and Interactive Techniques, 17:359–376,

1983.

[35] Jun Rekimoto. Smartskin: An infrastructure for freehand manipulation on

interactive surfaces. In Proceedings of the CHI 2002 Conference on Human

Factors in Computing Systems, pages 113–120. ACM, 2002.

[36] Ilya D. Rosenberg and Ken Birdwell. Real-time particle isosurface extraction.

In Proceedings of the 2008 symposium on Interactive 3D graphics and games,

pages 35–43. ACM, 2008.

[37] Ilya D. Rosenberg, Phillip L. Davidson, Casey M. R. Muller, and Jefferson Y.

Han. Real-time stereo vision using semi-global matching on programmable

graphics hardware. In Proceedings of ACM SIGGRAPH 2006. ACM, 2006.

120

BIBLIOGRAPHY

[38] Ilya D. Rosenberg and Ken Perlin. The unmousepad: An interpolating multi-

touch force-sensing input pad. ACM Transactions on Graphics - Proceedings

of ACM SIGGRAPH 2009, 28(3), 2009.

[39] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of

dense two-frame stereo correspondence algorithms. International Journal of

Computer Vision, 47:7–42, 2001. http://vision.middlebury.edu/stereo/

eval/.

[40] Karl Sims. Particle animation and rendering using data parallel computation.

Computer Graphics and Interactive Techniques, 24:405–413, 1990.

[41] Synaptics. Forcepad. 2012. http://www.synaptics.com/solutions/

products/forcepad.

[42] Pressure Profile Systems. Capacitive tactile sensing. 2008. http://www.

pressureprofile.com/technology-capacitive.php.

[43] Richard Szeliski and David Tonnesen. Surface modeling with oriented particle

systems. Computer Graphics and Interactive Techniques, 26(2):185–194, 1992.

[44] Tactonic. Sensor technology. 2010. http://www.tactonic.com/technology.

html.

[45] Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomerantes,

and Markus H. Gross. Optimized spatial hashing for collision detection of

deformable objects. Vision, Modeling, and Visualization, pages 47–54, 2003.

121

BIBLIOGRAPHY

[46] Adrian R. L. Travis, Timothy A. Large, Neil Emerton, and Steven Bathiche.

Wedge optics in flat panel displays. Proceedings of the IEEE, 101(1):45–60,

2013.

[47] Frédéric Triquet, Philippe Meseure, and Christophe Chaillou. Fast polygoniza-

tion of implicit surfaces. WSCG (Plzen, Czech Republic), 2:283–290, 2001.

[48] David Wessel, Rimas Avizienis, Adrian Freed, and Matthew Wright. A force

sensitive multi-touch array supporting multiple 2-D musical control structures.

New Interfaces for Musical Expression, pages 41–45, 2007.

[49] Wayne Westerman. Hand Tracking, Finger Identification and Chordic Ma-

nipulation on a Multi-Touch Surface. PhD thesis, University of Delaware,

1999.

[50] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control

implicit surfaces. Computer Graphics and Interactive Techniques, 28:269–277,

1994.

[51] Brian Wyvill, Craig McPheeters, and Geoff Wyvill. Animating soft objects.

The Visual Computer, 2(4):235–242, 1986.

[52] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure for soft

objects. The Visual Computer, 2(4):227–234, 1986.

122

