Left 4 Dead 2 Linux - From 6 to 300 FPS in OpenGL *

*or How We Learned to Stop Worrying and Love OpenGL
Rich Geldreich, Rick Johnson,

VALVE] Mike Sartain

Introduction

The Steam team took the initiative and bootstrapped
the Linux version of Left 4 Dead 2

Recently formed Linux team has focused on improving
performance

Collaborative effort between Valve and engineers from
NVIDIA, AMD, and Intel

Valve + Driver Devs together in same room

This quick talk focuses on the NVIDIA GTX 680 with
driver multithreading enabled

Our performance is currently highest on NVIDIA’'s GL driver

short demo

“short” timedemo created by Rick Johnson at Valve

Reproducible workload, representative of actual
gameplay, used for all of our recent experiments

Fairly deterministic — dead zombie limb positions seem to
vary somewhat between runs

otal Frames (excluding loading screen): 1497

otal Batches: 837,044

otal Primitives: 940,994 .686

State of Source Engine OpenGL Support

Avg. 11% faster in GL vs. D3D9 on GTX 680

~5% higher performance should be achievable by reducing
overhead in our D3D->GL layer

Targets a D3D9-like AP| with extensions, translates to GL

API calls on the fly, supports shader model 2.0b, soon 3.0
Mostly 1:1 mapping between D3D and GL concepts

Non-deferring, locally optimizing translation layer

Calls to DrawIndexedPrimitive immediately result in a
state flush and call to glDrawRangeElement sBaseVertex

Reasonable D3D->GL translation overhead

Multithreaded drivers: Avg. 50/50 split between CPU cycles
spent calling GL vs. translation overhead

Single threaded drivers: 80% GL vs. 20% translation overhead

Optimization Effort

Linux Team started with little practical OpenGL experience, so we needed help
We shared builds and invited all vendors to our offices

Focused on why the D3D9 vs. OpenGL builds had such vastly different
performance on the same hardware

Process: Devise/conduct experiment, test results with known workload,
refine/update mental model of system’s behavior, repeat

Goal was to account for every microsecond spent in our D3D->GL translation
layer and render thread

Interpreting experimental results can be challenging:
Game is multithreaded — bottlenecks can shift around in unintuitive ways
Driver’s server thread is mostly invisible to our profiling tools
Source Engine is extremely configurable/scalable — easily misconfigured
Primary profiling/debugging tools used:
Telemetry: Profiling/visualization system from RAD Game Tools
Custom batch trace recording mode in our D3D and D3D->GL translation layers
AMD’s GPU PerfStudio for GL state debugging/API call tracing

Telemetry

Cross platform performance visualization system from RAD
Game Tools
Three components:
Visualizer app (Linux/OSX/Windows)
Run-time component — trivial to drop in, very low footprint
Server
Intrusive system — requires adding calls to the Telemetry API
We use Telemetry zones for CPU profiling, timespans for GPU
We added several modes useful for graphics debugging/profiling:
Telemetry zones generated for all GL calls
Plumbed renderer’'s named begin/end “PIX” events to Telemetry zones
GPU timestamp queries visualized as Telemetry timespans

We've really only scratched the surface of its capabilities

CPU Profiling with the Telemetry Zone API

Zones define an “area of execution” on a single thread

Zones are hierarchical, i.e. if you define a zone inside of
another it will nest naturally in the Visualizer

Example code:

void some_ function(int x)

{

tmEnter(g tm context, TMZF NONE, '"some_function: %i”, x);
do _work () ;

cleanup() ;
tmLeave(g _tm context);

CEngine::Frame (273.31ms)}

d €
Fi Frame (273.31ms)
™M 3 =
= _Host_RunFrame [273.30ms) B
i | _Host_RunFrame_Render {258.86ms) —Host_F
-Host_F

(| SCR_UpdateScreen (258.85ms)

r View_Render [256.63ms)

| CViewRender::Render (256.62ms)

ViewDrawScene (234.71ms) [)oEnginePostProces

DrawWaorldAndEntities [228.50ms}

| bCheapWater (228.50ms)

DrawMode larray (111.99ms)

CModelRenderSystem::DrawModels {67.12ms)

NORMAL 40 (66.67ms)

DrawModelArray 2 (111.99ms)

-'b;av'vil.ac.f-!fArrayFlas hlight (62.68ms}

DrawModel|Array2 (66.67ms}

Era’wl‘l'ﬂ‘i!‘hzlrrayﬁa shlight (61.56ms)

DrawMeshRenderData {61.56ms)

DrawRangeEl Drawl

<L

<L

DrawRangeElemer DrawRangeElemer DrawRangeEl

DrawRangeElements

Wait (10.1Z | Wait (10.11 | Wait (10.0¢ | Wait (10.17 | Wait (10.11 | Wait (10.0¢ | Wait (10,17 | Wait (10.0¢ | Wait (10.1° | Wait (10.0¢ | Wait (10.1Z | Wait (10.0¢ | Wait {10.0¢ | Wait (14.58ms)IC | Wait (10.1Z | Wait (10.1(Wa

0 034b70 Wi | Wait (10.0¢ Wait (10.17 | Wait (10.0¢ | Wait (10.0¢ | Wait (10.0¢ [Wait (10.0¢ | Wait (10.0¢ | Wait (10.0¢ | Wait (15.11ms}[IDI | Wait (10.0¢

u
L Zone Cutoff: J| 0.01 ms Frames: 859
Duration: 00:59.661
e pLby i =2 Buffer: 32768K

Show |dle Zones:

valve-System-Product-Name (x86/Linux - 12 cores 32-bits)
/home fvalve /valvesrc/console/14d2/game /hiZ_linux
Mar 09, 2012 6:43:47 PM

ant (10,1 P Wait {1011 | 'wWait (1000 Wait (10,1, | Wait g10, 17 P Wait (1004 | Waik (10.1) | Wit (ROu0c | Waet (10,1, ¢ Wait (1004 'wait (10.1: | WaH

GPU Profiling with the Telemetry Timespan API

Timespans are like zones, but are not nestable, are
independent of zone hierarchies, and may span multiple
frames
GPU activity is profiled by generating GL_ TIMESTAMP
queries, using the GL_ARB_timer query extension
API’s
glQueryCounter Is called to retrieve the begin/end
timestamp of zones marked for GPU profiling
GPU time stamps are converted to absolute time and fed to
the Telemetry timespan API

The Telemetry SDK has several examples on how to do
this with various rendering API's

Batch Tracing

Visualizes the D3D/GL state changed in each batch, and the CPU
time spent processing each batch

Timings: Total GL time, Total DrawIndexedPrimitive time, Total D3D API
time
X axis = time, full scanline width = 50us

Y axis = batches, 1 batch per scanline, topmost scanline = first batch,
Present() time is visualized at bottom

Major state changes visualized as colorized columns
Easy to visually correlate state changes with increased GL processing time
Easy to visualize overhead of translation layer vs. GL, spikes, lock time
Easy to compare D3D9 vs. OpenGL performance — just compare traces

Trace videos created in real-time (1 PNG/frame using miniz open
source library)

VirtualDub used to create batch trace videos from multiple PNG’s
Can easily share videos with vendors using YouTube

LTER T
LTLRUE T

WS Bone LiIniforms FsS Uniforms

it |

#F Texturelsampler object changes

_ # Dynamic WBIIEBE Bytes

\

=

i Lt B RN s R

WS Regular Uniforms

-

WN

Total batch tirme (BElue Tint=Total GL Timeaj)

Fram=: 9211. EBatche=+Clear=:2 7F2%: Frim=:: 23253 . Fro3aram Chanass: 215
Fram=: DI Calls: 118sl. DI Time: 1. 1Z&m=s Total Present Time
Fram=: L Call=: rFr435. EL Tim=: B.S538m=s '
Dusrall: Batches: 7F454Z2E:; Prims: 234851175, FProaram Chanases: ZESSEGE
Dueralls: DI Call=s: 18443427 DI0D_Time:_ 1444, 35dms
e ralls GL Call=s: FI3l1&al55S ZL Time: 7Fad5.18Z2m=s

50us

W

Batch Tracing — Time Visualization

l- ~
1 T

1

Batch Timing Legend

'f\‘ | n‘“|""h

- = Overall time spent processing the batch (includes all
DrawlndexedPrimitive+OpenGL time)

'ql.l-r'- .1'|ILI|I] YL

e

Summary of Optimizations We’ve Done So Far

Multithreading: Now enabled in GL mode, removed
most calls to glXMakeCurrent, pthreads usage fixes

Reduced translation overhead: Rewrote hottest D3D-
>GL code paths for higher performance

Uniform updating: Improved dirty range tracking, added
separate uniform array for bone matrices

Dynamic buffer updating: giMapBufferRange vs.
glBufferSubData, handling of lock DISCARD and
NOOVERWRITE, added D3D UnlockActualSize API

gcc compiler options: added -ffast-math, removed —PIC

Resources/Links

Tools to check out:
Telemetry: http://ww.radgametools.com/telemetry.htm
GPU PerfStudio: http://developer.amd.com/tools/PerfStudio

Valve Linux Blog: http://blogs.valvesoftware.com/linux/

We'll be releasing several blog posts with lots of technical details
over the next couple months or so

Valve is hiring!
hitp://www.valvesoftware.com/|obs/

Our team is looking for Linux kernel, driver, and OpenGL
developers

We'll be at the OpenGL party to answer any questions

