
Left 4 Dead 2 Linux - From 6 to 300 FPS in OpenGL *

* or How We Learned to Stop Worrying and Love OpenGL

Rich Geldreich, Rick Johnson,

Mike Sartain

Introduction

� The Steam team took the initiative and bootstrapped

the Linux version of Left 4 Dead 2

� Recently formed Linux team has focused on improving

performance

� Collaborative effort between Valve and engineers from

NVIDIA, AMD, and Intel

� Valve + Driver Devs together in same room

� This quick talk focuses on the NVIDIA GTX 680 with

driver multithreading enabled

� Our performance is currently highest on NVIDIA’s GL driver

short demo

� “short” timedemo created by Rick Johnson at Valve

� Reproducible workload, representative of actual

gameplay, used for all of our recent experiments

� Fairly deterministic – dead zombie limb positions seem to

vary somewhat between runs

� Total Frames (excluding loading screen): 1497

� Total Batches: 837,044

� Total Primitives: 940,994,686

State of Source Engine OpenGL Support

� Avg. 11% faster in GL vs. D3D9 on GTX 680
� ~5% higher performance should be achievable by reducing

overhead in our D3D->GL layer

� Targets a D3D9-like API with extensions, translates to GL
API calls on the fly, supports shader model 2.0b, soon 3.0
� Mostly 1:1 mapping between D3D and GL concepts

� Non-deferring, locally optimizing translation layer
� Calls to DrawIndexedPrimitive immediately result in a

state flush and call to glDrawRangeElementsBaseVertex

� Reasonable D3D->GL translation overhead
� Multithreaded drivers: Avg. 50/50 split between CPU cycles

spent calling GL vs. translation overhead

� Single threaded drivers: 80% GL vs. 20% translation overhead

Optimization Effort

� Linux Team started with little practical OpenGL experience, so we needed help

� We shared builds and invited all vendors to our offices

� Focused on why the D3D9 vs. OpenGL builds had such vastly different
performance on the same hardware

� Process: Devise/conduct experiment, test results with known workload,
refine/update mental model of system’s behavior, repeat

� Goal was to account for every microsecond spent in our D3D->GL translation
layer and render thread

� Interpreting experimental results can be challenging:
� Game is multithreaded – bottlenecks can shift around in unintuitive ways
� Driver’s server thread is mostly invisible to our profiling tools
� Source Engine is extremely configurable/scalable – easily misconfigured

� Primary profiling/debugging tools used:
� Telemetry: Profiling/visualization system from RAD Game Tools
� Custom batch trace recording mode in our D3D and D3D->GL translation layers
� AMD’s GPU PerfStudio for GL state debugging/API call tracing

Telemetry

� Cross platform performance visualization system from RAD
Game Tools

� Three components:
� Visualizer app (Linux/OSX/Windows)

� Run-time component – trivial to drop in, very low footprint

� Server

� Intrusive system – requires adding calls to the Telemetry API
� We use Telemetry zones for CPU profiling, timespans for GPU

� We added several modes useful for graphics debugging/profiling:
� Telemetry zones generated for all GL calls

� Plumbed renderer’s named begin/end “PIX” events to Telemetry zones

� GPU timestamp queries visualized as Telemetry timespans

� We’ve really only scratched the surface of its capabilities

CPU Profiling with the Telemetry Zone API

� Zones define an “area of execution” on a single thread

� Usually corresponds to a single function – but not always

� Zones are hierarchical, i.e. if you define a zone inside of

another it will nest naturally in the Visualizer

� Example code:

void some_function(int x)

{

tmEnter(g_tm_context, TMZF_NONE, "some_function: %i”, x);

do_work();

cleanup();

tmLeave(g_tm_context);

}

GPU Profiling with the Telemetry Timespan API

� Timespans are like zones, but are not nestable, are

independent of zone hierarchies, and may span multiple

frames

� GPU activity is profiled by generating GL_TIMESTAMP

queries, using the GL_ARB_timer_query extension

API’s

� glQueryCounter is called to retrieve the begin/end

timestamp of zones marked for GPU profiling

� GPU time stamps are converted to absolute time and fed to

the Telemetry timespan API

� The Telemetry SDK has several examples on how to do

this with various rendering API’s

Batch Tracing

� Visualizes the D3D/GL state changed in each batch, and the CPU
time spent processing each batch
� Timings: Total GL time, Total DrawIndexedPrimitive time, Total D3D API

time

� X axis = time, full scanline width = 50us
� Y axis = batches, 1 batch per scanline, topmost scanline = first batch,

Present() time is visualized at bottom
� Major state changes visualized as colorized columns

� Easy to visually correlate state changes with increased GL processing time

� Easy to visualize overhead of translation layer vs. GL, spikes, lock time

� Easy to compare D3D9 vs. OpenGL performance – just compare traces

� Trace videos created in real-time (1 PNG/frame using miniz open
source library)

� VirtualDub used to create batch trace videos from multiple PNG’s
� Can easily share videos with vendors using YouTube

Batch Timing Legend

� Total time spent calling OpenGL
� Total time spent calling DrawIndexedPrimitive

� Overall time spent processing the batch (includes all

DrawIndexedPrimitive+OpenGL time)

Batch Tracing – Time Visualization

Summary of Optimizations We’ve Done So Far

� Multithreading: Now enabled in GL mode, removed
most calls to glXMakeCurrent, pthreads usage fixes

� Reduced translation overhead: Rewrote hottest D3D-

>GL code paths for higher performance

� Uniform updating: Improved dirty range tracking, added

separate uniform array for bone matrices

� Dynamic buffer updating: glMapBufferRange vs.

glBufferSubData, handling of lock DISCARD and

NOOVERWRITE, added D3D UnlockActualSize API

� gcc compiler options: added -ffast-math, removed –fPIC

Resources/Links

� Tools to check out:

� Telemetry: http://ww.radgametools.com/telemetry.htm

� GPU PerfStudio: http://developer.amd.com/tools/PerfStudio

� Valve Linux Blog: http://blogs.valvesoftware.com/linux/

� We’ll be releasing several blog posts with lots of technical details
over the next couple months or so

� Valve is hiring!

� http://www.valvesoftware.com/jobs/

� Our team is looking for Linux kernel, driver, and OpenGL

developers

� We’ll be at the OpenGL party to answer any questions

